Dynamic interactions between city and atmospheric boundary layer – urbisphere Berlin campaign

2021 ◽  
Author(s):  
Daniel Fenner ◽  
Andreas Christen ◽  
Nektarios Chrysoulakis ◽  
Sue Grimmond ◽  
Fred Meier ◽  
...  

<p class="western">In order to better understand dynamic interactions between a city and the regional atmospheric boundary layer, the '<em>urbisphere </em>Berlin campaign' is being conducted during 2021-2022 in Germany within the ERC Synergy <em>urbisphere</em> grant. <em>urbisphere</em> aims to enhance understanding, forecasting, and projecting feedbacks between climate change and drivers of urban transformation. One foci is the development of the next generation of urban climate <span lang="en-GB">simulations</span> with dynamic atmosphere-urban <span lang="en-GB">feedbacks</span>.</p> <p class="western">A <span lang="en-GB">key aspect</span> of <em>urbisphere</em> are comprehensive measurement campaigns in different cities. These involve undertaking high-quality research <span lang="en-GB">observations</span> on urban effects for observation-based studies as well as for model development and evaluation. The <span lang="en-GB">Berlin</span> campaign is investigating the dynamics of the atmospheric boundary layer within and beyond the city, and how the atmosphere dynamically responds to urban surface forcings, emissions, and human activity cycles <span lang="en-GB">from</span> diurnal to an annual cycle. <span lang="en-GB">A</span> dense network of ground-based remote sensing instruments (e.g. automatic lidars and ceilometers, doppler-wind lidars) for mixing-layer height detection within the city and along a rural-urban-rural transect, scintillometer paths <span lang="en-GB">for</span> spatially averaged information on turbulent sensible heat flux, and radiation measurements for quantification of the influence of urban emissions, aerosols and clouds on downwelling radiative fluxes is deployed. Altogether, the additional observations supplement the existing Urban Climate Observatory (UCO) in Berlin to allow for a comprehensive and spatially detailed understanding of city-atmosphere interactions, and the effect of cities on downwind regions. This contribution provides an overview of the measurement campaign and gives first insights into collected data.</p>

2014 ◽  
Vol 7 (1) ◽  
pp. 173-182 ◽  
Author(s):  
T. Luo ◽  
R. Yuan ◽  
Z. Wang

Abstract. Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of the ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and the ABL vertical structure over ocean and land are analyzed. The new methods are then applied to satellite lidar measurements. The aerosol-derived global marine boundary layer heights are evaluated with marine ABL stratiform cloud top heights and results show a good agreement between them.


2019 ◽  
Vol 11 (13) ◽  
pp. 1590 ◽  
Author(s):  
Ruijun Dang ◽  
Yi Yang ◽  
Xiao-Ming Hu ◽  
Zhiting Wang ◽  
Shuwen Zhang

The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weather prediction. Aerosol lidar is a powerful remote sensing instrument frequently used to retrieve the ABLH through detecting the vertical distributions of aerosol concentration. Presently available methods for ABLH determination from aerosol lidar are summarized in this review, including a lot of classical methodologies as well as some improved versions of them. Some new recently developed methods applying advanced techniques such as image edge detection, as well as some new methods based on multi-wavelength lidar systems, are also summarized. Although a lot of techniques have been proposed and have already given reasonable results in several studies, it is impossible to recommend a technique which is suitable in all atmospheric scenarios. More accurate instantaneous ABLH from robust techniques is required, which can be used to estimate or improve the boundary layer parameterization in the numerical model, or maybe possible to be assimilated into the weather and environment models to improve the simulation or forecast of weather and air quality in the future.


2013 ◽  
Vol 6 (5) ◽  
pp. 8311-8338
Author(s):  
T. Luo ◽  
R. Yuan ◽  
Z. Wang

Abstract. Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and ABL vertical structure over ocean (TWP_C2 cite) and land (SGP_C1) are analyzed. The new methods are also applied to satellite lidar measurements. The derived global marine boundary layer structure database shows good agreement with marine ABL stratiform cloud top height.


2013 ◽  
Vol 13 (17) ◽  
pp. 8525-8541 ◽  
Author(s):  
H. Wouters ◽  
K. De Ridder ◽  
M. Demuzere ◽  
D. Lauwaet ◽  
N. P. M. van Lipzig

Abstract. The urban heat island (UHI) over Paris during summer 2006 was simulated using the Advanced Regional Prediction System (ARPS) updated with a simple urban parametrization at a horizontal resolution of 1 km. Two integrations were performed, one with the urban land cover of Paris and another in which Paris was replaced by cropland. The focus is on a five-day clear-sky period, for which the UHI intensity reaches its maximum. The diurnal evolution of the UHI intensity was found to be adequately simulated for this five day period. The maximum difference at night in 2 m temperature between urban and rural areas stemming from the urban heating is reproduced with a relative error of less than 10%. The UHI has an ellipsoidal shape and stretches along the prevailing wind direction. The maximum UHI intensity of 6.1 K occurs at 23:00 UTC located 6 km downstream of the city centre and this largely remains during the whole night. An idealized one-column model study demonstrates that the nocturnal differential sensible heat flux, even though much smaller than its daytime value, is mainly responsible for the maximum UHI intensity. The reason for this nighttime maximum is that additional heat is only affecting a shallow layer of 150 m. An air uplift is explained by the synoptic east wind and a ramp upwind of the city centre, which leads to a considerable nocturnal adiabatic cooling over cropland. The idealized study demonstrates that the reduced vertical adiabatic cooling over the city compared to cropland induces an additional UHI build-up of 25%. The UHI and its vertical extent is affected by the boundary-layer stability, nocturnal low-level jet as well as radiative cooling. Therefore, improvements of representing these boundary-layer features in atmospheric models are important for UHI studies.


2005 ◽  
Vol 18 (14) ◽  
pp. 2706-2723 ◽  
Author(s):  
Larry W. O’Neill ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen ◽  
Frank J. Wentz

Abstract The marine atmospheric boundary layer (MABL) response to sea surface temperature (SST) perturbations with wavelengths shorter than 30° longitude by 10° latitude along the Agulhas Return Current (ARC) is described from the first year of SST and cloud liquid water (CLW) measurements from the Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System (EOS) Aqua satellite and surface wind stress measurements from the QuikSCAT scatterometer. AMSR measurements of SST at a resolution of 58 km considerably improves upon a previous analysis that used the Reynolds SST analyses, which underestimate the short-scale SST gradient magnitude over the ARC region by more than a factor of 5. The AMSR SST data thus provide the first quantitatively accurate depiction of the SST-induced MABL response along the ARC. Warm (cold) SST perturbations produce positive (negative) wind stress magnitude perturbations, leading to short-scale perturbations in the wind stress curl and divergence fields that are linearly related to the crosswind and downwind components of the SST gradient, respectively. The magnitudes of the curl and divergence responses vary seasonally and spatially with a response nearly twice as strong during the winter than during the summer along a zonal band between 40° and 50°S. These seasonal variations closely correspond to seasonal and spatial variability of large-scale MABL stability and surface sensible heat flux estimated from NCEP reanalysis fields. SST-induced deepening of the MABL over warm water is evident in AMSR measurements of CLW. Typical annual mean differences in cloud thickness between cold and warm SST perturbations are estimated to be about 300 m.


2010 ◽  
Vol 10 (2) ◽  
pp. 341-364 ◽  
Author(s):  
A. Jeričević ◽  
L. Kraljević ◽  
B. Grisogono ◽  
H. Fagerli ◽  
Ž. Večenaj

Abstract. This paper introduces two changes of the turbulence parameterization for the EMEP (European Monitoring and Evaluation Programme) Eulerian air pollution model: the replacement of the Blackadar in stable and O'Brien in unstable turbulence formulations with an analytical vertical diffusion profile (K(z)) called Grisogono, and a different mixing height determination, based on a bulk Richardson number formulation (RiB). The operational or standard (STD) and proposed new parameterization for eddy diffusivity have been validated in all stability conditions against the observed daily surface nitrogen dioxide (NO2), sulphur dioxide (SO2) and sulphate (SO42−) concentrations at different EMEP stations during the year 2001. A moderate improvement in the correlation coefficient and bias for NO2 and SO2 and a slight improvement for sulphate is found for the most of the analyzed stations with the Grisogono K(z) scheme, which is recommended for further application due to its scientific and technical advantages. The newly extended approach for the mechanical eddy diffusivity is applied to the Large Eddy Simulation data focusing at the bulk properties of the neutral and stable atmospheric boundary layer. A summary and extension of the previous work on the empirical coefficients in neutral and stable conditions is provided with the recommendations to the further model development. Special emphasis is given to the representation of the ABL in order to capture the vertical transport and dispersion of the atmospheric air pollution. Two different schemes for the ABL height determination are evaluated against the radiosounding data in January and July 2001, and against the data from the Cabauw tower, the Netherlands, for the same year. The validation of the ABL parameterizations has shown that the EMEP model is able to reproduce spatial and temporal mixing height variability. Improvements are identified especially in stable conditions with the new ABL height scheme based on the RiB number.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1088
Author(s):  
Min-Seong Kim ◽  
Byung Hyuk Kwon ◽  
Tae-Young Goo

The Structure des Echanges Mer-Atmosphère, Propriétés Océaniques/ Recherche Expérimentale (SEMAPHORE) experiment was conducted over the oceanic Azores current located in the Azores Basin. The evolution of the marine atmospheric boundary layer (MABL) was studied based on the evaluation of mean and turbulent data using in situ measurements by a ship and two aircrafts. The sea surface temperature (SST) field was characterized by a gradient of approximately 1 °C/100 km. The SST measured by aircraft decreased at a ratio of 0.25 °C/100 m of altitude due to the divergence of the infrared radiation flux from the surface. With the exception of temperature, the mean parameters measured by the two aircrafts were in good agreement with each other. The sensible heat flux was more dispersed than the latent heat flux according to the comparisons between aircraft and aircraft, and aircraft and ship. This study demonstrates the feasibility of using two aircraft to describe the MABL and surface flux with confidence.


Sign in / Sign up

Export Citation Format

Share Document