Atmospheric Degradation and Climate and Air-Quality Impact of Furan-based Biomass Burning Emission Products: A Kinetic and Mechanistic study

Author(s):  
Maria Angelaki ◽  
Vassileios Papadimitriou ◽  
Manolis Romanias

<p>Biomass burning emissions, domestic- and wild-fires, agricultural burning, and fuel use, emit a blend of gases and particles with adverse effects on humans-health, climate and air quality. Furans are heterocyclic organic compounds (OVOC) that have been recently identified as important biomass burning emission-products. It is estimated that furan (C<sub>4</sub>H<sub>4</sub>O), 2-methylfuran (C<sub>5</sub>H<sub>6</sub>O), 2-furaldehyde (C<sub>5</sub>H<sub>4</sub>O<sub>2</sub>) and benzofuran (C<sub>8</sub>H<sub>6</sub>O) emission levels are 70 to 120 times higher compared to CO. Once furans are emitted in the atmosphere, they will undergo gas phase chemistry and, to an extent, they will be photolyzed at actinic wavelengths. OH and NO<sub>3</sub> radicals, Cl atoms and O<sub>3</sub> chemistry might result in tropospheric O<sub>3</sub> and in secondary organic aerosols (SOA) formation, which might be enhanced due to their potent low volatility. Therefore, it is essential to investigate the kinetics and the mechanism of all the photochemically induced degradation pathways and identify and quantify SOA precursors, so as to evaluate their impact on Air-Quality and Climate.</p><p> </p><p>Within this framework, a thorough laboratory study, using two complementary techniques has been carried out. First, major atmospheric oxidants reaction rate coefficients with furans were determined. Secondly, the degradation mechanisms were investigated from both kinetic and conversion-yields perspectives. A Teflon atmospheric simulation chamber, named THALAMOS (THermALly regulated AtMOSpheric simulation chamber), was used to study the reactions at atmospheric pressure. State-of-the-art in-line instrumentation, e.g., FTIR spectroscopy and Chemical ionization mass spectrometry, were used for the real-time monitoring of reactants and products. To further our understanding, the reactions rate coefficients were also measured at 2 mTorr, between 253 and 363 K, with the continuous flow technique of the Very Low Pressure Reactor, in which an effusive molecular beam is analyzed with Quadrupole Mass Spectrometry (VLPR/QMS). Intercomparing the results from the two techniques reactions mechanistic-scheme was mapped-out and their impact was evaluated.</p><p> </p><p>OH and NO<sub>3</sub> radicals and Cl atoms reactions with all the furans were measured to be in the order of 10<sup>-11</sup>, 10<sup>-10 </sup>and 10<sup>-12</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>, respectively, leading to atmospheric-lifetimes between 2 and 10 hours. Temperature and pressure dependent kinetic measurements revealed association as the dominant reaction channel. However, experiments at very-low-pressure regime showed that HCl elimination cannot be excluded, especially when the furan-ring aromaticity is not breaking.</p><p> </p><p>Finally, it is evident that furans degradation will occur at low altitudes and SOA precursors, i.e., end-oxidation products will be formed nearby their emission locations. Further, kinetics studies were used to study the structure-reactivity trend of furans and to estimate their Photochemical Ozone Creation Potential (POCP). Results from this study are expected to significantly improve our insight on furans tropospheric photochemistry and via identifying and quantifying end-products and SOA formation, to assess their indirect and direct impact, on Climate, Air-Quality and humans-health.</p>

2019 ◽  
Author(s):  
Matthew M. Coggon ◽  
Christoper Y. Lim ◽  
Abigail R. Koss ◽  
Kanako Sekimoto ◽  
Bin Yuan ◽  
...  

Abstract. Chamber oxidation experiments conducted at the Fire Sciences Laboratory in 2016 are evaluated to identify important chemical processes contributing to the OH chemistry of biomass burning non-methane organic gases (NMOG). Based on the decay of primary carbon measured by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS), it is confirmed that furans and oxygenated aromatics are among the NMOG emitted from western United States fuel types with the highest reactivities towards OH. The oxidation processes and formation of secondary NMOG masses measured by PTR-ToF-MS and iodide clustering time-of-flight chemical ionization mass spectrometry (I-CIMS) is interpreted using a box model employing a modified version of the Master Chemical Mechanism (v. 3.3.1) that includes the OH oxidation of furan, 2-methylfuran, 2,5-dimethylfuran, furfural, 5-methylfurfural, and guaiacol. The model supports the assignment of major PTR-ToF-MS and I-CIMS signals to a series of anhydrides and hydroxy furanones formed primarily through furan chemistry. This mechanism is applied to a Lagrangian box model used previously to model a real biomass burning plume. The updated mechanism reproduces the decay of furans and oxygenated aromatics and the formation of secondary NMOG, such as maleic anhydride. Based on model simulations conducted with and without furans, it is estimated that furans contributed up to 10 % of ozone and over 90 % of maleic anhydride formed within the first 4 hours of oxidation. It is shown that maleic anhydride is present in a biomass burning plume transported over several days, which demonstrates the utility of anhydrides as tracers for aged biomass burning plumes.


2019 ◽  
Vol 12 (11) ◽  
pp. 5829-5844 ◽  
Author(s):  
Brett B. Palm ◽  
Xiaoxi Liu ◽  
Jose L. Jimenez ◽  
Joel A. Thornton

Abstract. Chemical ionization mass spectrometry (CIMS) techniques have become prominent methods for sampling trace gases of relatively low volatility. Such gases are often referred to as being “sticky”, i.e., having measurement artifacts due to interactions between analyte molecules and instrument walls, given their tendency to interact with wall surfaces via absorption or adsorption processes. These surface interactions can impact the precision, accuracy, and detection limits of the measurements. We introduce a low-pressure ion–molecule reaction (IMR) region primarily built for performing iodide-adduct ionization, though other adduct ionization schemes could be employed. The design goals were to improve upon previous low-pressure IMR versions by reducing impacts of wall interactions at low pressure while maintaining sufficient ion–molecule reaction times. Chamber measurements demonstrate that the IMR delay times (i.e., magnitude of wall interactions) for a range of organic molecules spanning 5 orders of magnitude in volatility are 3 to 10 times lower in the new IMR compared to previous versions. Despite these improvements, wall interactions are still present and need to be understood. To that end, we also introduce a conceptual framework for considering instrument wall interactions and a measurement protocol to accurately capture the time dependence of analyte concentrations. This protocol uses short-duration, high-frequency measurements of the total background (i.e., fast zeros) during ambient measurements as well as during calibration factor determinations. This framework and associated terminology applies to any instrument and ionization technique that samples compounds susceptible to wall interactions.


2018 ◽  
Vol 18 (5) ◽  
pp. 3299-3319 ◽  
Author(s):  
Abigail R. Koss ◽  
Kanako Sekimoto ◽  
Jessica B. Gilman ◽  
Vanessa Selimovic ◽  
Matthew M. Coggon ◽  
...  

Abstract. Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (I− CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of > 0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.


2014 ◽  
Vol 38 (11) ◽  
pp. 5382-5390 ◽  
Author(s):  
Rhonda L. Stoddard ◽  
Jingwei Luo ◽  
Nicole van der Wal ◽  
Natasha F. O'Rourke ◽  
Jeremy E. Wulff ◽  
...  

The conjugate addition of an alcohol to a butynoate ester using an organophosphine catalyst was monitored using pressurized sample infusion electrospray ionization mass spectrometry (PSI-ESI-MS), together with 31P and 1H NMR spectroscopy.


2020 ◽  
Vol 20 (2) ◽  
pp. 699-720
Author(s):  
Inmaculada Colmenar ◽  
Pilar Martin ◽  
Beatriz Cabañas ◽  
Sagrario Salgado ◽  
Araceli Tapia ◽  
...  

Abstract. The atmospheric fate of a series of saturated alcohols (SAs) was evaluated through kinetic and reaction product studies with the main atmospheric oxidants. These SAs are alcohols that could be used as fuel additives. Rate coefficients (in cm3 molecule−1 s−1) measured at ∼298 K and atmospheric pressure (720±20 Torr) were as follows: k1 ((E)-4-methylcyclohexanol + Cl) = (3.70±0.16) ×10-10, k2 ((E)-4-methylcyclohexanol + OH) = (1.87±0.14) ×10-11, k3 ((E)-4-methylcyclohexanol + NO3) = (2.69±0.37) ×10-15, k4 (3,3-dimethyl-1-butanol + Cl) = (2.69±0.16) ×10-10, k5 (3,3-dimethyl-1-butanol + OH) = (5.33±0.16) ×10-12, k6 (3,3-dimethyl-2-butanol + Cl) = (1.21±0.07) ×10-10, and k7 (3,3-dimethyl-2-butanol + OH) = (10.50±0.25) ×10-12. The main products detected in the reaction of SAs with Cl atoms (in the absence/presence of NOx), OH radicals, and NO3 radicals were (E)-4-methylcyclohexanone for the reactions of (E)-4-methylcyclohexanol, 3,3-dimethylbutanal for the reactions of 3,3-dimethyl-1-butanol, and 3,3-dimethyl-2-butanone for the reactions of 3,3-dimethyl-2-butanol. Other products such as formaldehyde, 2,2-dimethylpropanal, and acetone have also been identified in the reactions of Cl atoms and OH radicals with 3,3-dimethyl-1-butanol and 3,3-dimethyl-2-butanol. In addition, the molar yields of the reaction products were estimated. The products detected indicate a hydrogen atom abstraction mechanism at different sites on the carbon chain of alcohol in the case of Cl reactions and a predominant site in the case of OH and NO3 reactions, confirming the predictions of structure–activity relationship (SAR) methods. Tropospheric lifetimes (τ) of these SAs have been calculated using the experimental rate coefficients. Lifetimes are in the range of 0.6–2 d for OH reactions, 7–13 d for NO3 radical reactions, and 1–3 months for Cl atoms. In coastal areas, the lifetime due to the reaction with Cl decreases to hours. The calculated global tropospheric lifetimes, and the polyfunctional compounds detected as reaction products in this work, imply that SAs could contribute to the formation of ozone and nitrated compounds at local, regional, and even global scales. Therefore, the use of saturated alcohols as additives in diesel blends should be considered with caution.


Sign in / Sign up

Export Citation Format

Share Document