Assessment of Falanghina vine status at different spatial and temporal scales by means of a smart multiple spatial and temporal resolution system

Author(s):  
Anna Brook ◽  
Antonello Bonfante ◽  
Nicola Damiano ◽  
Chiara Cirillo ◽  
Giovanna Battipaglia ◽  
...  

<p>Sustainable grapevine cultivation and the stable production of high-quality wine is endangered by climate change in many areas of the Mediterranean region. Climate change is expected to induce rising temperatures, changes in precipitation frequency and increasing occurrence of extreme events such as severe and prolonged drought with direct effects on berry production and composition, and consequently wine quality. In this context, the monitoring and dynamic assessment of vine status with an early detection of health decline signs are needed to evaluate and adopt mitigation actions oriented to precision and sustainable agriculture (e.g., irrigation).</p><p>Several indicators are reported in literature to evaluate plant health status (e.g., Ref. MAES reports), based on remote sensing, UAV techniques or in situ data collection. With remote sensing technologies, standardized information, over large areas, at low costs and with high temporal coverage, can be acquired, allowing assessment of plant indicators trends in a practical, repetitive and comparative way. However, data processing techniques do not fully reflect the overall physiological status and healthiness of plant systems. On the other hand, in situ morpho-physiological analyses at the single plant level are time-consuming and restricted to a low number of individuals compared to remote sensing or UAV techniques, not always covering the whole variability of the vineyards.</p><p>This study aimed to apply an integrated multidisciplinary conceptual approach for vine health assessment, based on a systematic process for a multi-source, multi-scale and multi-temporal synergic interpretation of data with different techniques in order to cover the gaps of the single disciplines. This approach was recently developed and successfully tested on an Aglianico vineyard in Southern Italy and its applicability needs to be tested on other terroirs.</p><p>Therefore, in this study, the multidisciplinary approach was calibrated and applied in a hilly environment in southern Italy (La Guardiense farm, Guardia Sanframondi, Benevento, Campania region) on Vitis vinifera L. subsp. vinifera ‘Falanghina’ in order to assess the ability of the system to evaluate the plant status during the various phenological phases. The plant status results obtained from four sites were compared with data collected from different techniques including the monitoring of plant growth and ecophysiology as well as the reconstruction of past eco-physiological behavior through the analysis of tree rings in the stemwood.</p><p>The overall results confirmed the applicability of such an approach to achieve a comprehensive assessment of the vine health status considering the continuum soil-plant-atmosphere, thus furnishing information on possible plant responses to expected environmental changes as valuable inputs to manage cultivation factors in various terroirs.</p>

2018 ◽  
Vol 18 (11) ◽  
pp. 3019-3035 ◽  
Author(s):  
Marco Uzielli ◽  
Guido Rianna ◽  
Fabio Ciervo ◽  
Paola Mercogliano ◽  
Unni K. Eidsvig

Abstract. In recent years, flow-like landslides have extensively affected pyroclastic covers in the Campania region in southern Italy, causing human suffering and conspicuous economic damages. Due to the high criticality of the area, a proper assessment of future variations in event occurrences due to expected climate changes is crucial. The study assesses the temporal variation in flow-like landslide hazard for a section of the A3 “Salerno–Napoli” motorway, which runs across the toe of the Monte Albino relief in the Nocera Inferiore municipality. Hazard is estimated spatially depending on (1) the likelihood of rainfall-induced event occurrence within the study area and (2) the probability that the any specific location in the study area will be affected during the runout. The probability of occurrence of an event is calculated through the application of Bayesian theory. Temporal variations due to climate change are estimated up to the year 2100 through an ensemble of high-resolution climate projections, accounting for current uncertainties in the characterization of variations in rainfall patterns. Reach probability, or defining the probability that a given spatial location is affected by flow-like landslides, is calculated spatially based on a distributed empirical model. The outputs of the study predict substantial increases in occurrence probability over time for two different scenarios of future socioeconomic growth and atmospheric concentration of greenhouse gases.


2021 ◽  
Author(s):  
Chiara Cirillo ◽  
Antonello Bonfante ◽  
Giovanna Battipaglia ◽  
Angelita Gambuti ◽  
Sheridan Lois Woo ◽  
...  

<p>Climate change is one of the main challenges for future agriculture since it can severely affect plant growth and development. The Mediterranean area is one of the most vulnerable regions where climatic models have forecasted a significant increase in frequency and severity of drought events. Ongoing climate change is aggravating some critical issues in the production of the autochthonous grape variety Greco, widely cultivated in the Campania Region (southern Italy) and used alone or blend in many quality label wines.</p><p>Nowadays, there is a high risk for the economic sustainability of Greco cultivation due to the following main issues: reduced vine productivity, low selling price of grapes, and territory fragmentation. Such criticisms induce the abandonment of small/medium-sized farms due to either crop conversion or consolidation into larger farms.</p><p>The Greco variety may represent a study model to introduce innovative and integrated management of cultivation techniques, such as pruning and soil management, with the aim to resolve similar problems affecting other autochthonous regional cultivars. They include issues, such as low fertility, that cause an unbalanced ratio among sugars, acids, and affect grape metabolites important for the oxidative stability and sensory quality of wine.</p><p>The GREASE project, funded by Campania Region within the Rural Development Programme 2014-2020, falls within the framework of sustainable management of vineyards (from economic, environmental and social viewpoints) with an insight to climate change. The general objective to improve the potential production of Greco concerns the management of major cultivation practices in viticulture by the realization of a cultivar-specific model for vine canopy and soil management. Optimization of parameters is important in order to achieve a good vegetative and reproductive balance that enhances grape and wine quality, improves farm profitability and environmental sustainability. This project is conducted in a vineyard of Vitis vinifera L. subsp. vinifera ‘Greco’ located in southern Italy (Feudi di San Gregorio farm).</p><p>The projects has 3 main inter-disciplinary actions: A1) to determine the effect of diverse vine pruning systems on plant resource use, through the reconstruction of vine eco-physiological history (dendro-anatomical and -isotopic analyses); A2-A3) to analyse the effect of soil management and of vine training systems on the continuum soil-plant-atmosphere system. Specific activities include: pedoclimatic, vegetative and reproductive, physiological and hydraulic characterization; microvinification and characterization of grapes and wine produced in the different trials; evaluation of resources use efficiency, pests, footprint family markers; model development.</p><p>The impact of the project on other wineries of the Campania Region will be significant due to an increased understanding of how cultivation systems influence the efficient use of available resources in the Greco vineyard. Such knowledge would be useful to design simple modifications to the presently used agronomical practices, to achieve production and economic gains without long-term structural investments. This know-how will also favour other downstream technologies and biotechnologies of viticulture and enology production, as well as the associated companies (e.g., producers of fertilizers, seeds for green manure) to realize products and services better adapted to the development of cultivar-specific viticultural and enological production systems.</p>


2020 ◽  
Author(s):  
Jin Ma ◽  
Ji Zhou ◽  
Frank-Michael Göttsche ◽  
Shaofei Wang

<p>As one of the most important indicators in the energy exchange between land and atmosphere, Land Surface Temperature (LST) plays an important role in the research of climate change and various land surface processes. In contrast to <em>in-situ</em> measurements, satellite remote sensing provides a practical approach to measure global and local land surface parameters. Although passive microwave remote sensing offers all-weather observation capability, retrieving LST from thermal infra-red data is still the most common approach. To date, a variety of global LST products have been published by the scientific community, e.g. MODIS and (A)ASTR /SLSTR LST products, and used in a broad range of research fields. Several global and regional satellite retrieved LSTs are available since 1995. However, the temporal-spatial resolution before 2000 is generally considerably lower than that after 2000. According to the latest IPCC report, 1983 – 2012 are the warmest 30 years for nearly 1400 years. Therefore, for global climate change research, it is meaningful to extend the time series of global LST products with a relatively higher temporal-spatial resolution to before 2000, e.g. that of NOAA AVHRR. In this study, global daily NOAA AVHRR LST products with 5-km spatial resolution were generated for 1981-2000. The LST was retrieved using an ensemble of RF-SWAs (Random Forest and Split-Window Algorithm). For a maximum uncertainty in emissivity and water vapor content of 0.04 and 1.0 g/cm<sup>2</sup>, respectively, the training and testing with simulated datasets showed a retrieval accuracy with MBE of less than 0.1 K and STD of 1.1 K. The generated RF-SWA LST product was also evaluated against <em>in-situ</em> measurements: for water sites of the National Data Buoy Center (NDBC) between 1981 and 2000, it showed an accuracy similar to that for the simulated data, with a small MBE of less than 0.1 K and a STD between 0.79 K and 1.02 K. For SURFRAD data collected between 1995 and 2000, the MBE is -0.03 K with a range of -1.20 K – 0.54 K and a STD with a mean of 2.55 K and a range of 2.08 K – 3.0 K (site dependent). As a new global historical dataset, the RF-SWA LST product can help to close the gap in long-term LST data available to climate research. Furthermore, the data can be used as input to land surface process models, e.g. the Community Land Model (CLM). In support of the scientific research community, the RF-SWA LST product will be freely available at the National Earth System Science Data Center of China (http://www.geodata.cn/).</p>


Inland Waters ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 130-141 ◽  
Author(s):  
Nikolay Filatov ◽  
Vyacheslav Baklagin ◽  
Tatyana Efremova ◽  
Larisa Nazarova ◽  
Nikolay Palshin

2015 ◽  
Vol 2 (4) ◽  
pp. 454-467 ◽  
Author(s):  
Miaogen Shen ◽  
Shilong Piao ◽  
Tsechoe Dorji ◽  
Qiang Liu ◽  
Nan Cong ◽  
...  

Abstract Phenology studies the cycle of events in nature that are initiated and driven by an annually recurring environment. Plant phenology is expected to be one of the most sensitive and easily observable natural indicators of climate change. On the Tibetan Plateau (TP), an accelerated warming since the mid-1980s has resulted in significant environmental changes. These new conditions are accompanied by phenological changes that are characterized by considerable spatiotemporal heterogeneity. Satellite remote sensing observed widespread advance in the start of the plant growing season across the plateau during the 1980s and 1990s but substantial delay over 2000–2011 in the southwest although it continued to advance in the northeast regions of the TP. Both observational studies and controlled experiments have revealed, to some extent, the positive role of higher preseason temperature and even more precipitation in advancing the leaf onset and first flowering date of the TP. However, a number of rarely visited research issues that are essential for understanding the role of phenology in ecosystem responses and feedback processes to climate change remain to be solved. Our review recommends that addressing the following questions should be a high priority. How did other phenological events change, such as flowering and fruiting phenology? What are the influences from environmental changes other than temperature and precipitation, including human activities such as grazing? What are the genetic and physiological bases of plants phenological responses? How does phenological change influence ecosystem structure and function at different scales and feedback to the climate system? Investigating these research questions requires, first of all, new data of the associated environmental variables, and consistent and reliable phenological observation using different methodologies (i.e. in situ observations and remote sensing).


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 345
Author(s):  
Zaibun Nisa ◽  
Muhammad Sarfraz Khan ◽  
Ajit Govind ◽  
Marco Marchetti ◽  
Bruno Lasserre ◽  
...  

Remote sensing-based evapotranspiration (ET) models with various levels of sophistication have emerged recently with the possibilities of user-defined model calibrations. Their application for water resources management and climate studies from regional to global scale has been rapidly increasing, which makes it important to validate field scale ET in a complex crop assemblage before operational use. Based on in situ flux-tower measurements by the eddy-covariance (EC) system, this study tested three single-source energy balance models for estimating daily ET from fennel/maize/ryegrass-clover cropland rotations in a Mediterranean context in southern Italy. The sensitivity of three user-friendly ET models (SEBS, QWaterModel, and METRIC-EEFlux) with reference to the EC system over a center pivot irrigated cropland is discussed in detail. Results in terms of statistical indicators revealed that SEBS and METRIC-EEFlux showed reasonable agreements with measured ET (r2 = 0.59SEBS, RMSE = 0.71 mm day−1; r2 = 0.65METRIC, RMSE = 1.13 mm day−1) in terms of trends and magnitudes. At 30 m spatial resolution, both models were able to capture the in-field variations only during the maize development stage. The presence of spurious scan lines due to sensor defects in Landsat L7 ETM+ can contribute to the qualities of the METRIC-Efflux’s ET product. In our observation, the QWaterModel did not perform well and showed the weakest congruency (r2 = 0.08QWaterModel) with ground-based ET estimates. In a nutshell, the study evaluated these automated remote sensing-based ET estimations and suggested improvements in the context of a generic approach used in their underlying algorithm for robust ET retrievals in rotational cropland ecosystems.


2021 ◽  
Vol 21 (7) ◽  
pp. 2181-2196
Author(s):  
Antonia Longobardi ◽  
Ouafik Boulariah ◽  
Paolo Villani

Abstract. Drought is a sustained period of below-normal water availability. It is a recurring and worldwide phenomenon, but the Mediterranean Basin is seen as a very vulnerable environment in this perspective, and understanding historical drought conditions in this area is necessary to plan mitigation strategies to further face future climate change impacts. The current research was aimed at the description of drought conditions and evolution for the Campania region (southern Italy), assessed by the analysis of an in situ measurement database which covers a centennial period from 1918 to 2019. Standardized Precipitation Index (SPI) time series were reconstructed for different accumulation timescales (from 3 to 48 months) and the modified Mann–Kendall and Sen's tests were applied to identify SPI changes over time. SPI time series were mostly affected by a negative trend, significant for a very large area of the region, particularly evident for the accumulation scales longer than 12 months. Mean drought duration (MDD), severity (MDS) and peak (MDP) were furthermore investigated for both moderate (SPI ≤ −1) and extremely severe conditions (SPI ≤ −2). The accumulation scale affected the drought features, with longer duration and larger severity associated with the larger accumulation scales. Drought characteristics spatial patterns were not congruent for the different SPI timescales: if duration and severity were larger in the southern areas, peaks appeared mostly severe in the northern areas of the region. Extremely severe events were featured by shorter durations and larger severity compared to the moderate drought events but were very less frequent (over 75 % less then) and did not appear to be focused on specific areas of the region.


Sign in / Sign up

Export Citation Format

Share Document