The GREASE project: Sustainable cultivation of Greco grapevine - Resource use efficiency and application of the footprint family indicators

Author(s):  
Chiara Cirillo ◽  
Antonello Bonfante ◽  
Giovanna Battipaglia ◽  
Angelita Gambuti ◽  
Sheridan Lois Woo ◽  
...  

<p>Climate change is one of the main challenges for future agriculture since it can severely affect plant growth and development. The Mediterranean area is one of the most vulnerable regions where climatic models have forecasted a significant increase in frequency and severity of drought events. Ongoing climate change is aggravating some critical issues in the production of the autochthonous grape variety Greco, widely cultivated in the Campania Region (southern Italy) and used alone or blend in many quality label wines.</p><p>Nowadays, there is a high risk for the economic sustainability of Greco cultivation due to the following main issues: reduced vine productivity, low selling price of grapes, and territory fragmentation. Such criticisms induce the abandonment of small/medium-sized farms due to either crop conversion or consolidation into larger farms.</p><p>The Greco variety may represent a study model to introduce innovative and integrated management of cultivation techniques, such as pruning and soil management, with the aim to resolve similar problems affecting other autochthonous regional cultivars. They include issues, such as low fertility, that cause an unbalanced ratio among sugars, acids, and affect grape metabolites important for the oxidative stability and sensory quality of wine.</p><p>The GREASE project, funded by Campania Region within the Rural Development Programme 2014-2020, falls within the framework of sustainable management of vineyards (from economic, environmental and social viewpoints) with an insight to climate change. The general objective to improve the potential production of Greco concerns the management of major cultivation practices in viticulture by the realization of a cultivar-specific model for vine canopy and soil management. Optimization of parameters is important in order to achieve a good vegetative and reproductive balance that enhances grape and wine quality, improves farm profitability and environmental sustainability. This project is conducted in a vineyard of Vitis vinifera L. subsp. vinifera ‘Greco’ located in southern Italy (Feudi di San Gregorio farm).</p><p>The projects has 3 main inter-disciplinary actions: A1) to determine the effect of diverse vine pruning systems on plant resource use, through the reconstruction of vine eco-physiological history (dendro-anatomical and -isotopic analyses); A2-A3) to analyse the effect of soil management and of vine training systems on the continuum soil-plant-atmosphere system. Specific activities include: pedoclimatic, vegetative and reproductive, physiological and hydraulic characterization; microvinification and characterization of grapes and wine produced in the different trials; evaluation of resources use efficiency, pests, footprint family markers; model development.</p><p>The impact of the project on other wineries of the Campania Region will be significant due to an increased understanding of how cultivation systems influence the efficient use of available resources in the Greco vineyard. Such knowledge would be useful to design simple modifications to the presently used agronomical practices, to achieve production and economic gains without long-term structural investments. This know-how will also favour other downstream technologies and biotechnologies of viticulture and enology production, as well as the associated companies (e.g., producers of fertilizers, seeds for green manure) to realize products and services better adapted to the development of cultivar-specific viticultural and enological production systems.</p>

2020 ◽  
Author(s):  
Nicola Damiano ◽  
Chiara Cirillo ◽  
Giovanna Battipaglia ◽  
Chiara Amitrano ◽  
Antonio Pannico ◽  
...  

<p>In the Mediterranean region, climate change is intensifying the need to improve the resource use efficiency of crops (e.g. water use efficiency) and to increase yield, quality and stability of productions, especially in high profitability and vulnerable crops as grapevine. In a climate change scenario, with increasing temperature and frequency of extreme events, such as prolonged periods of drought, the improvement of knowledge about the plasticity of morpho-functional traits in vines, becomes pivotal. Only a deep knowledge of vine responses to environmental constraints can help achieving the correct management of cultivation factors towards sustainability.</p><p>The objective of this study is to apply a multidisciplinary approach for monitoring the resource use efficiency and resource allocation during vine development up to wine production. This general objective will be pursued by analysing the complex relationships between parameters in the continuum environment/plant/wine with specific emphasis on the influence of water availability on the vine, grapes, must and finally wine, in order to relate climate, plant water status and oenological characteristics.</p><p>The study was conducted in a vineyard of Vitis vinifera L. subsp. vinifera ‘Falanghina’ located in southern Italy (La Guardiense farm, Guardia Sanframondi, Benevento, Campania region).</p><p>The vineyard performance was monitored on the basis of several morphological and eco-physiological parameters, measured in the main phenological phases, including: plant architecture, fertility, leaf anatomical traits, photosynthetic efficiency, leaf gas exchanges, nutritional status, berry and must quality. Water use efficiency was estimated through the analysis of anatomical and stable isotope traits (linked with hydraulic and resource efficiency parameters) from tree-ring series and leaf samples. Stable isotopes were also analysed in the must, in order to check the occurrence of an isotopic signature from the plants towards the must.</p><p>The approach proved to be promising for achieving a comprehensive understanding on the impact of environmental constraints not only on plant behaviour, but also on the characteristics of the oenological products, furnishing at the same time a promising tool to reconstruct vine status from the isotopic trace in the must.</p><p> </p>


2018 ◽  
Vol 18 (11) ◽  
pp. 3019-3035 ◽  
Author(s):  
Marco Uzielli ◽  
Guido Rianna ◽  
Fabio Ciervo ◽  
Paola Mercogliano ◽  
Unni K. Eidsvig

Abstract. In recent years, flow-like landslides have extensively affected pyroclastic covers in the Campania region in southern Italy, causing human suffering and conspicuous economic damages. Due to the high criticality of the area, a proper assessment of future variations in event occurrences due to expected climate changes is crucial. The study assesses the temporal variation in flow-like landslide hazard for a section of the A3 “Salerno–Napoli” motorway, which runs across the toe of the Monte Albino relief in the Nocera Inferiore municipality. Hazard is estimated spatially depending on (1) the likelihood of rainfall-induced event occurrence within the study area and (2) the probability that the any specific location in the study area will be affected during the runout. The probability of occurrence of an event is calculated through the application of Bayesian theory. Temporal variations due to climate change are estimated up to the year 2100 through an ensemble of high-resolution climate projections, accounting for current uncertainties in the characterization of variations in rainfall patterns. Reach probability, or defining the probability that a given spatial location is affected by flow-like landslides, is calculated spatially based on a distributed empirical model. The outputs of the study predict substantial increases in occurrence probability over time for two different scenarios of future socioeconomic growth and atmospheric concentration of greenhouse gases.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 177 ◽  
Author(s):  
Mirko Castellini ◽  
Anna Maria Stellacci ◽  
Marcello Mastrangelo ◽  
Francesco Caputo ◽  
Luisa Maria Manici

Saving water resources in agriculture is a topic of current research in Mediterranean environments, and rational soil management can allow such purposes. The Beerkan Estimation of Soil Transfer parameters (BEST) procedure was applied in five olive orchards of Salento peninsula (southern Italy) to estimate the soil physical and hydraulic properties under alternative soil management (i.e., no-tillage (NT) and minimum tillage (MT)), and to quantify the impact of soil management on soil water conservation. Results highlighted the soundness of BEST predictions since they provided consistent results in terms of soil functions or capacitive-based soil indicators when (i) the entire data set was grouped by homogeneous classes of texture, bulk density, and capillarity of the soil, (ii) the predictions were compared with the corresponding water retention measures independently obtained in lab, and (iii) some correlations of literature were checked. BEST was applied to establish a comparison at Neviano (NE) and Sternatia (ST) sites. The two neighboring NT soils compared at NE showed substantial discrepancies in soil texture (i.e., sandy loam (NE-SL) or clay (NE-C)). This marked difference in soil texture could determine a worsening of the relative field capacity at the NE-SL site (relative field capacity, RFC < 0.6), as compared to NE-C where RFC was optimal. The current soil management determined a similar effect (RFC < 0.6) at Sternatia (ST-MT vs. ST-NT), but the worsening in soil properties, due to soil tillage, must be considered substantially transient, as progressive improvement is expected with the restoration of the soil structure. The results of this work suggest that strategic MT can be a viable solution to manage the soil of Salento olive orchards.


2016 ◽  
Vol 2 (1) ◽  
pp. 11 ◽  
Author(s):  
Suprabadevi Ayumayasari Saraswati ◽  
I Made Sena Darmasetiyawana

The main causes of ice-ice disease that seaweed production will decline. Bacterial infections occur due to fluctuations in climate change resulted in a decrease in water quality resulting in the durability of seaweed. When seaweed stress will facilitate pathogen infection. Disease pathogens cause damage to internal organs. The spread of bacterial disease in seaweed is generally very fast and can lead to death, so that the loss caused by this disease is quite large. Ice-ice disease occurrence is seasonal and contagious, so the impact on the selling price low. The results showed that there are two types of pathogenic bacteria that can potentially cause disease in which bacteria Vibrio alginoliticus and Pseudomonas aeruginosa. Climate change affects the spatial distribution of micro seaweed bacterial pathogens.


2020 ◽  
Vol 116 (5/6) ◽  
Author(s):  
Emmanuel Discamps ◽  
Christopher S. Henshilwood ◽  
Karen L. van Niekerk

Understanding how hunter-gatherers adapted to the marked environmental changes of the last glacialinterglacial transition (~18 to 11.7 ka cal. BP) remains a key question for archaeologists. South Africa, with its rich and well-preserved archaeological sequences, has a major role to play in this study. Reconstructing the subsistence strategies of people during the Later Stone Age (LSA) is crucial for investigating human– environment interactions at this period in South Africa, yet data are scarce. Recent excavations at a new LSA site, Klipdrift Cave, in the southern Cape, revealed c. 14–11 ka levels with excellent faunal preservation associated with an Oakhurst lithic industry. Taphonomic and zooarchaeological analyses of these levels show an almost exclusive accumulation of large mammal remains by LSA groups, with evidence of meat removal, marrow extraction, fire use and the preferential import of nutritious elements back to the site. Large mammals from the site indicate a relatively stable environment dominated by open grasslands that is in accordance with isotopic analyses, with only subtle diachronic variability. Comparison of faunal dynamics with changes in lithic industries, shellfish density and composition reflects complex, asynchronous changes in the macromammal, micromammal, shellfish and lithic records throughout the Oakhurst levels. Rather than evidence of a strong impact of global climate change, Klipdrift Cave shows subtle shifts in subsistence patterns and technology that are better explained by internal societal dynamics and the history of the Oakhurst techno-complex, or local changes in site occupation and direct environment. Significance • LSA archaeological sequences can document the impact of the marked environmental changes of the Pleistocene–Holocene transition on hunter-gatherer societies. Studies of past subsistence strategies are central to our understanding of human–environment interactions in these contexts. • Zooarchaeological, taphonomical and palaeoecological analyses of the large mammal remains from the excavated LSA sequence at Klipdrift Cave provide new data on these interactions. The data highlight asynchronous changes in subsistence patterns, lithic technology and local environment, supporting a complex interplay between climate change, local environment, societal changes and human prehistory. • Klipdrift Cave data set also shows that excavation and analytical choices can strongly bias faunal analysis and environmental reconstructions based thereon.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1975
Author(s):  
Elisa Driesen ◽  
Wim Van den Ende ◽  
Maurice De Proft ◽  
Wouter Saeys

Stomata, the microscopic pores surrounded by a pair of guard cells on the surfaces of leaves and stems, play an essential role in regulating the gas exchange between a plant and the surrounding atmosphere. Stomatal development and opening are significantly influenced by environmental conditions, both in the short and long term. The rapid rate of current climate change has been affecting stomatal responses, as a new balance between photosynthesis and water-use efficiency has to be found. Understanding the mechanisms involved in stomatal regulation and adjustment provides us with new insights into the ability of stomata to process information and evolve over time. In this review, we summarize the recent advances in research on the underlying mechanisms of the interaction between environmental factors and stomatal development and opening. Specific emphasis is placed on the environmental factors including light, CO2 concentration, ambient temperature, and relative humidity, as these factors play a significant role in understanding the impact of global climate change on plant development.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 998 ◽  
Author(s):  
Loubna El Ansari ◽  
Roza Chenoune ◽  
Yigezu A. Yigezu ◽  
Christian Gary ◽  
Hatem Belhouchette

A lot of national and international effort has been made to promote sustainable agricultural production systems in drylands. However, success has been seriously limited due to lack of thorough characterization of the impact of the diversity of farm household types on productivity, resource-use efficiency and economic and nutritional status. This study applied hierarchical ascendant classification to a random sample of 286 cereal-producing farm households in Morocco and identified distinct household typologies. It also carried out an analysis of trade-offs between economic, nutritional and environmental factors induced by the production decisions of the different farm household typologies. Our analysis identified three dominant farm household typologies in the production system, namely: (i) intensive predominantly-vegetable farming households with high input intensities, (ii) semi-intensive cereal mono-crop farming households with moderate input intensities and (iii) extensive mixed cereal-legume farming households with low input intensities. Extensive mixed cereal-legume farming households exhibited the highest resource-use efficiency and high biodiversity. These benefits, however, came at the expense of a much lower farm income and limited food supplies relative to the other two systems. These results show that, as is the case for many dryland regions, all three farm types showed precarious conditions for one or more of the sustainability-related indicators.


2020 ◽  
Vol 7 ◽  
pp. 65-78
Author(s):  
Narendra Bahadur Sing ◽  
Dipak Khanal ◽  
Laxmee Bhandari

Yarsagumba is an endoparasitic fungus growing on insect larvae found in the high Himalayan region of Nepal, which is a very expensive and better income source for local peoples. The study was conducted randomly selecting 80 households of two rural municipalities namely Talkot and Saipal who are involved in Yarsagumba collection to assess the impact of Yarsagumba on the livelihood of local people of Bajhang district. The surveyed result revealed that climate change has highly affected the harvesting of Yarsagumba. Its selling price is affected by market value fluctuation. Yarsagumba plays a significant role in the livelihood of the local peoples. The surveyed data comparing the last five years (2068 to 2072) shows that the highest income was found to be NRs. 139,200 per household per season in the year 2068. The market price, trade, and marketing channels of Yarsagumba are unclear and commercial trading takes place illegally because of fear of being charged higher taxes. The temperature and humidity play an important role in the abundance and formation of Yarsagumba. The study showed that 43.8% of respondents perceived change in temperature and rainfall pattern over 10 years, and 73.7% of respondents perceived that temperature and rainfall affected Yarsagumba collection.


Sign in / Sign up

Export Citation Format

Share Document