Water Quality Mixing Model (WQMM) for Environmental Flow Release Monitoring

Author(s):  
Gabriel Sentlinger

<p>Environmental Flow Release monitoring can be an expensive undertaking in active watercourses normally suitable for run-of-river hydropower projects.  In order to attain acceptable (<10%) uncertainty in the derived flow series, it is necessary for a Qualified Professional (QP) to make several site visits to measure a range of flows in order to calibrate a stage-discharge (rating) curve.  With climate change, the need to measure drought conditions and respond appropriately is crucial for habitat health and to prevent fish stranding.  The current study employs a Water Quality Mixing Model (WQMM) to estimate flows at a downstream site from an existing hydropower plant using a modified constant rate mixing model.  This is an independent estimate of flow entirely distinct from the stage-discharge curve.  The method can be employed anywhere there is a sufficient mixing length and sufficiently distinct WQ traits.  The method can reduce both maintenance costs and flow uncertainty where Environmental Flow Release Monitoring is required.</p>

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 249 ◽  
Author(s):  
Markus Reisenbüchler ◽  
Minh Duc Bui ◽  
Daniel Skublics ◽  
Peter Rutschmann

The worldwide storage volume of reservoirs is estimated to decrease by 0.5–1% per year due to sedimentation, which is higher than the gain in volume by newly built dams. For water supply or flood protection, the preservation of the storage volume is crucial. Operators and authorities, therefore, need sediment management concepts to ensure that the storage volume is sufficient. In this study, we developed a sediment-flushing concept using 2D numerical modelling for a run-of-river hydropower plant located in the Saalach River in southeastern Germany. The calibrated bed elevation was used as the initial bed for a number of simulations with different discharge regimes under varying operational schemes. By comparing the simulated results, we propose an appropriate flushing scheme in terms of intensity and duration to obtain a balance of sediment regime in the river. Furthermore, we demonstrate that such an optimised sediment management can generate synergies for improving measures of flood protection.


2021 ◽  
Author(s):  
Amir Foroughian ◽  
Ehsan Derikvand ◽  
Hossein Eslami ◽  
Saeb Khoshnavaz

Abstract To prevent environmental risks and preserve water quality, it is necessary to determine the environmental flow of rivers. Water release from reservoirs can be used to determine the environmental flow and water quality at the downstream of a dam. In this study, considering the quantitative and qualitative objectives, water release from Dez dam was suggested as a way for preserving the environment of river. To identify the optimal release flow of Dam, an environmental zone was determined using the hydrological methods of Tennant and aquatic base flow. The Qual-2k model was used to simulate 6 quality parameters in River. The results proved its good potential for simulation of the studied quality parameters including BOD. The optimal river flow was determined by Game theory, and different qualitative and quantitative scenarios were studied using the Nash multiplying function. The results showed, with increases in qualitative and quantitative objectives of the problem, the optimal release flows are decreased and increased, respectively.


Author(s):  
Badhan Saha ◽  
Mazharul Islam ◽  
Khondoker Nimul Islam ◽  
Jubair Naim ◽  
Md Shahriar Farabi

A small hydropower plant is an environment-friendly renewable energy technology. The run-of-river type gravitational water vortex turbine can be designed to produce electricity at sites with low water heads. In this study, an experimental investigation was undertaken on this type of turbine with a water tank and a runner which is connected to a shaft. At the end of the shaft, a rope brake was attached to measure the output power, torque and overall efficiency of the vortex turbine by varying flow rates. The designed vortex turbine can achieve an overall efficiency of . The experimental results were validated with available data in the literature and theories associated with the turbine. The results also showed that the flow rate plays a vital role in generating power, torque as well as overall efficiency. The project was completed using local resources and technologies. Moreover, as water is used as the input power, this project is eco-friendly which has no adverse effect on the environment.


Sign in / Sign up

Export Citation Format

Share Document