scholarly journals Visualisation and quantification of wheat root system architecture and soil moisture distribution in an aggregated soil using neutron computed tomography

Author(s):  
Tinashe Mawodza ◽  
Manoj Menon ◽  
Stuart Casson ◽  
Genoveva Burca

<p>Sustainably intensifying global crop production in a world of diminishing natural resources is paramount for the attainment of zero hunger worldwide (a United Nations sustainable development goal). Key to this sustainable intensification is a deep understanding of the dynamics and complexities of plant-soil interactions for optimisation of plant productivity. Neutron computed radiography and tomography are powerful, non-invasive tools that enable the characterisation of plant-soil systems in situ. They also enable the visualisation and quantification of water distribution and movement within plant-soils systems. In this novel study, we use high resolution neutron computed tomography to investigate root system architectural differences in two different genotypes (Wild type vs TaEPF1-OE1-water use efficient mutant line) of bread wheat (Triticum aestivum). We further investigated how wheat roots interact with the heterogeneously distributed soil moisture. For this investigation, plants were grown in an aggregated sandy loamy soil with moderate amounts of organic matter (4%) for 13 days prior to imaging. We were able to produce a detailed three dimensional visualisation of the root architectural distribution of the two different genotypes imaged. These did not show significant differences between the two genotypes under investigation. We were also able to visualise relative soil moisture distribution and made inferences to how the roots of the wheat plants under investigation interact with the heterogeneously distributed soil moisture. Our results showed increased lateral root growth in regions with finer soil aggregates that had an estimated lower moisture content as compared to larger soil aggregates that retained higher amounts of moisture. This study demonstrates that detailed investigations into plant-soil interactions using neutron imaging techniques can be done successfully even in aggregated soils with considerable amounts of organic matter. This is a departure from the majority of neutron imaging experiments that predominantly use disaggregated sand soils devoid of organic matter as a growth medium.</p>

2020 ◽  
Author(s):  
Sarah Bereswill ◽  
Nicole Rudolph-Mohr ◽  
Christian Tötzke ◽  
Nikolay Kardjilov ◽  
André Hilger ◽  
...  

<p>Complex plant-soil interactions can be visualized and quantified by combined application of different non-invasive imaging techniques. Oxygen, carbon dioxide and pH gradients in the rhizosphere can be observed with fluorescent planar optodes, while neutron radiography detects small-scale heterogeneities in soil moisture and its dynamics. Respiration and exudation rates can vary between roots of different types, such as primary and lateral roots, as well as along single roots among the same plant. The 3D root system architecture is therefore a key information when studying rhizosphere processes. It can be captured in detail with neutron tomography, but so far only for plants grown in small, cylindrical containers.</p><p>Combined non-invasive imaging of biogeochemical dynamics, soil moisture distribution and 3D root system architecture is a technical challenge. Thin, slab-shaped rhizotrons with relatively large vertical and lateral extension are well suited for optical fluorescence imaging, allowing for spatially extended observation of biogeochemical patterns. This rhizotron geometry is, however, unfavorable for standard 3D tomography due to reconstruction artefacts triggered by insufficient neutron transmission when the long side of the sample is aligned parallel to the beam direction.</p><p>We therefore applied neutron laminography, a method where the rotational axis is tilted, to measure the root systems of maize and lupine plants grown in slab-shaped glass rhizotrons (length = 150 mm, width = 150 mm, depth = 15 mm) in 3D. In parallel, we investigated rhizosphere oxygen dynamics and pH value via fluorescence imaging and assessed soil moisture distribution with neutron radiography.</p><p>Neutron laminography enabled the 3D reconstruction of the root systems with a nominal spatial resolution of 100 µm/pixel. Reconstruction quality strongly depended on root-soil contrast and hence soil moisture level. After reconstruction of the root system and co-registration with the fluorescence images, first results indicate that observed oxygen concentrations and pH gradients depend on root type and individual distance of the roots from the planar optode.</p><p>In conclusion, neutron laminography is a novel 3D imaging method for root-soil systems grown in slab-shaped rhizotrons. The method allows for determining the precise 3D position of individual roots within the rhizotron and can be combined with 2D imaging approaches. Following experiments will address X-ray laminography as a possible attractive further application.</p>


2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


Ecohydrology ◽  
2008 ◽  
Vol 1 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Alex J. Rinehart ◽  
Luis A. Méndez-Barroso ◽  
Carlos A. Aragón ◽  
Gautam Bisht ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1174 ◽  
Author(s):  
Honglin Zhu ◽  
Tingxi Liu ◽  
Baolin Xue ◽  
Yinglan A. ◽  
Guoqiang Wang

Soil moisture distribution plays a significant role in soil erosion, evapotranspiration, and overland flow. Infiltration is a main component of the hydrological cycle, and simulations of soil moisture can improve infiltration process modeling. Different environmental factors affect soil moisture distribution in different soil layers. Soil moisture distribution is influenced mainly by soil properties (e.g., porosity) in the upper layer (10 cm), but by gravity-related factors (e.g., slope) in the deeper layer (50 cm). Richards’ equation is a widely used infiltration equation in hydrological models, but its homogeneous assumptions simplify the pattern of soil moisture distribution, leading to overestimates. Here, we present a modified Richards’ equation to predict soil moisture distribution in different layers along vertical infiltration. Two formulae considering different controlling factors were used to estimate soil moisture distribution at a given time and depth. Data for factors including slope, soil depth, porosity, and hydraulic conductivity were obtained from the literature and in situ measurements and used as prior information. Simulations were compared between the modified and the original Richards’ equations and with measurements taken at different times and depths. Comparisons with soil moisture data measured in situ indicated that the modified Richards’ equation still had limitations in terms of reproducing soil moisture in different slope positions and rainfall periods. However, compared with the original Richards’ equation, the modified equation estimated soil moisture with spatial diversity in the infiltration process more accurately. The equation may benefit from further solutions that consider various controlling factors in layers. Our results show that the proposed modified Richards’ equation provides a more effective approach to predict soil moisture in the vertical infiltration process.


1999 ◽  
Vol 43 ◽  
pp. 103-108
Author(s):  
Nozomu HIROSE ◽  
Toshio KOIKE ◽  
Hiroshi ISHIDAIRA ◽  
Takeo TADONO ◽  
Wang Shaoling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document