The effect of sky conditions and urban morphology on urban heat island in Seoul city

Author(s):  
Soo Joeng Joen ◽  
Jin woo oh ◽  
Jack Ngarambe ◽  
Patrick Nzivugira Duhirwe ◽  
Mi Aye Su ◽  
...  

<p>The urban heat island (UHI) is a serious climatological phenomenon that is likely to exacerbate the effects of climate change. It has adverse effects on the thermal comfort of urban dwellers, building energy consumption and the general health of vulnerable demographics (i.e. older people). To understand the effects of UHI and therefore devise efficient methods to mitigate it, it is important that we understand the many factors affecting UHI and the magnitude of their contribution on the manifestation of UHI, especially in urban areas. Consequently, in the current study, we study the effect of sky conditions and urban geometry on UHI in Seoul city, South Korea. The climatic data detailing diverse sky conditions, categorized by the amount of cloud cover, was collected from 28 Automatic Weather Stations (AWS) located in Seoul city. Information on urban geometry such as building density, gross floor area ration and building area ratio was obtained from satellite imagery. Our results indicate that the levels of UHI, quantified using urban heat island intensity (UHII), are dependent on the prevailing sky conditions. We found that, UHII was highest under cloudy sky conditions (r = 0.71) and lowest under clear sky conditions (r = 0.66). Furthermore, we found that UHII was correlated with building area ratio and gross area ratio; areas with high building area ratios and gross area ratios tended to also experience high UHII levels. The results presented in the current study are useful to policy makers or urban designers that wish to curb the increasing effects of UHI in urban areas and consequently improve thermal comfort in urban areas, reduce building energy consumption for space cooling purposes and prevent heat-related mortalities in old and vulnerable populations.</p><p> </p><div> </div>

2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


Author(s):  
Susanna Magli ◽  
Chiara Lodi ◽  
Luca Lombroso ◽  
Alberto Muscio ◽  
Sergio Teggi

Energy ◽  
2019 ◽  
Vol 174 ◽  
pp. 407-419 ◽  
Author(s):  
Xiaoma Li ◽  
Yuyu Zhou ◽  
Sha Yu ◽  
Gensuo Jia ◽  
Huidong Li ◽  
...  

2018 ◽  
Vol 162 ◽  
pp. 05025 ◽  
Author(s):  
Younis Mohammed ◽  
Aws Salman

With the growth of cities, the ambient air temperatures (Ta) inside the urban areas are expected to be higher compared to the surrounding rural areas, creating urban heat island (UHI) phenomenon. The city of Baghdad is an example of a hot dry climate cities and during summer, the UHI intensity is significantly affected by the extreme direct solar radiation and leads to outdoor thermal discomfort. Also it causes an increase in energy consumption and air pollution. This research work focuses on the effect of urban geometry and green area in the formation of heat island through a study of two different fabrics of residential neighbourhoods. The height to width ratio (H/W) and vegetation are adopted while the materials of buildings were unified in all study cases. Three-dimensional numerical software Envi-met 4.1 was utilized to analyze and assess the studied parameters including: ambient air temperature (Ta), street surface temperature (Ts) and mean radiant temperature (Tmrt). This study has given a better understanding of the role of urban geometry and green area on forming the UHI that influence on the microclimatic conditions in hot dry climate of the city of Baghdad. So that helped to generate guidelines of urban design and planning practices for a better thermal performance in hot and dry cities.


Climate ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 48
Author(s):  
Pierdonato Romano ◽  
Enrico Prataviera ◽  
Laura Carnieletto ◽  
Jacopo Vivian ◽  
Michele Zinzi ◽  
...  

In recent decades, the cooling energy demand in urban areas is increasing ever faster due to the global warming and the growth of developing economies. In this perspective, the urban building energy modelling community is focusing its research activities on innovative tools and policy actions to improve cities’ sustainability. This work aims to present a novel module of the EUReCA (Energy Urban Resistance Capacitance Approach) platform for evaluating the effects of the interaction between district’s buildings in the cooling season. EUReCA predicts the urban energy demand using a bottom-up approach and low computational resources. The new module allows us to evaluate the mutual shading between buildings and the urban heat island effects, and it is well integrated with the calculation of the energy demand of buildings. The analysis was carried out considering a real case study in Padua (Italy). Results show that the urban heat island causes an average increase of 2.2 °C in the external air temperature mainly caused by the waste heat rejected from cooling systems. This involves an increase in urban cooling energy and electricity demand, which can be affected between 6 and 8%. The latter is the most affected by the urban heat island (UHI), due to the degradation it causes on the HVAC systems’ efficiency.


2020 ◽  
Vol 59 (5) ◽  
pp. 859-883 ◽  
Author(s):  
Robert Schoetter ◽  
Julia Hidalgo ◽  
Renaud Jougla ◽  
Valéry Masson ◽  
Mario Rega ◽  
...  

AbstractHigh-resolution maps of the urban heat island (UHI) and building energy consumption are relevant for urban planning in the context of climate change mitigation and adaptation. A statistical–dynamical downscaling for these parameters is proposed in the present study. It combines a statistical local weather type approach with dynamical simulations using the mesoscale atmospheric model Meso-NH coupled to the urban canopy model Town Energy Balance. The downscaling is subject to uncertainties related to the weather type approach (statistical uncertainty) and to the numerical models (dynamical uncertainty). These uncertainties are quantified for two French cities (Toulouse and Dijon) for which long-term dense high-quality observations are available. The seasonal average nocturnal UHI intensity is simulated with less than 0.2 K bias for Dijon, but it is overestimated by up to 0.8 K for Toulouse. The sensitivity of the UHI intensity to weather type is, on average, captured by Meso-NH. The statistical uncertainty is as large as the dynamical uncertainty if only one day is simulated for each weather type. It can be considerably reduced if 3–6 days are taken instead. The UHI reduces the building energy consumption by 10% in the center of Toulouse; it should therefore be taken into account in the production of building energy consumption maps.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
P. Shahmohamadi ◽  
A. I. Che-Ani ◽  
K. N. A. Maulud ◽  
N. M. Tawil ◽  
N. A. G. Abdullah

This paper investigates the impact of anthropogenic heat on formation of urban heat island (UHI) and also determines which factors can directly affect energy use in the city. It explores literally the conceptual framework of confliction between anthropogenic heat and urban structure, which produced UHI intensity and affected energy consumption balance. It then discusses how these two factors can be affected and gives implication to the city and then focuses on whether actions should be taken for balancing adaptation and mitigation of UHI effects. It will be concluded by making the three important strategies to minimise the impact of UHI on energy consumption: landscaping, using albedo materials on external surfaces of buildings and urban areas, and promoting natural ventilation.


Sign in / Sign up

Export Citation Format

Share Document