The variational echo tracking method and its application in convective storm nowcasting

Author(s):  
Jiankun Wu ◽  
Mingxuan Chen ◽  
Rui Qin ◽  
Feng Gao ◽  
Linye Song

<p>The objective extrapolation forecast is the main method for 0-1 hour convective storm nowcasting. Radar echo extrapolation was performed by using the 6 minute interval radar mosaics obtained from the radar images of 8 multi-radars in Beijing-Tianjin-Hebei region. A comparative study of two extrapolated forecasts of eighteen typical convective precipitation events occurred in Beijing-Tianjin-Hebei region from 2016 to 2018 was conducted. Compared with the tracking radar echoes by correlation method, the variational echo tracking method utilizes variational technique to compute the motion vector fields, and uses two strict constraints to get a better motion vector field. The results indicated that the variational echo tracking method performed better in prediction of the radar echo pattern, echo location, and echo intensity at 30- and 60-min forecast lead times: 1) A comparative study of the two extrapolated forecasts of four precipitation events in Beijing-Tianjin-Hebei region was conducted. The result indicated that the radar echo location, the echo pattern and echo intensity produced by the variational echo tracking method were closer to the real observation within one hour. 2) Quantitative evaluation for the two extrapolated forecasts of the eighteen typical convective precipitation events was conducted. Compared with the tracking radar echoes by correlation method, the probability of detection and the critical success index of the 30- or 60-min extrapolated forecast produced by the variational echo tracking method were higher, meanwhile the false alarm rate was lower when the radar echo threshold was 35dBz and 45dBz. Also, a quantitative evaluation classified by the weather type indicated that the variational echo tracking method performed better than the tracking radar echoes by correlation method in most weather types.</p>

2021 ◽  
Vol 38 (4) ◽  
pp. 885-895
Author(s):  
Yi Luo ◽  
Xudong Liang ◽  
Gang Wang ◽  
Zheng Cao

AbstractIn this study, we propose a new way to obtain motion vectors using the integrating velocity–azimuth process (IVAP) method for extrapolation nowcasting. Traditional tracking methods rely on tracking radar echoes of a few time slices. In contrast, the IVAP method does not depend on the past variation of radar echoes; it only needs the radar echo and radial velocity observations at the latest time. To demonstrate it is practical to use IVAP-retrieved winds to extrapolate radar echoes, we carried out nowcasting experiments using the IVAP method, and compared these results with the results using a traditional method, namely, the tracking radar echoes by correlation (TREC) method. Comparison based on a series of large-scale mature rainfall cases showed that the IVAP method has similar accuracy to that of the TREC method. In addition, the IVAP method provides the vertical wind profile that can be used to anticipate storm type and motion deviations.


2009 ◽  
Vol 26 (4) ◽  
pp. 719-732 ◽  
Author(s):  
Lei Han ◽  
Shengxue Fu ◽  
Lifeng Zhao ◽  
Yongguang Zheng ◽  
Hongqing Wang ◽  
...  

Abstract Storm identification, tracking, and forecasting make up an essential part of weather radar and severe weather surveillance operations. Existing nowcasting algorithms using radar data can be generally classified into two categories: centroid and cross-correlation tracking. Thunderstorm Identification, Tracking, and Nowcasting (TITAN) is a widely used centroid-type nowcasting algorithm based on this paradigm. The TITAN algorithm can effectively identify, track, and forecast individual convective storm cells, but TITAN tends to provide incorrect identification, tracking, and forecasting in cases where there are dense cells whose shape changes rapidly or where clusters of storm cells occur frequently. Aiming to improve the performance of TITAN in such scenarios, an enhanced TITAN (ETITAN) algorithm is presented. The ETITAN algorithm provides enhancements to the original TITAN algorithm in three aspects. First, in order to handle the false merger problem when two storm cells are adjacent, and to isolate individual storm cells from a cluster of storms, ETITAN uses a multithreshold identification method based on mathematical morphology. Second, in the tracking phase, ETITAN proposes a dynamic constraint-based combinatorial optimization method to track storms. Finally, ETITAN uses the motion vector field calculated by the cross-correlation method to forecast the position of the individual isolated storm cells. Thus, ETITAN combines aspects of the two general classes of nowcasting algorithms, that is, cross-correlation and centroid-type methods, to improve nowcasting performance. Results of experiments presented in this paper show the performance improvements of the ETITAN algorithm.


2012 ◽  
Vol 198-199 ◽  
pp. 948-953
Author(s):  
Jian Ping Ou ◽  
Sheng Qi Liu ◽  
Wei Niu

An implementation framework of stepped-frequency LFM (SF-LFM) radar echoes simulator is presented in the paper based on the decomposition and calculation of SF-LFM radar echoes of a moving target. The proposed method can be implemented conveniently with direct digital synthesis (DDS) logic resource. The feasibility of this resolution is verified with computer and semi-physical simulations experiments.


2011 ◽  
Vol 2 (4) ◽  
pp. 260-271 ◽  
Author(s):  
V. Nilsen ◽  
J. A. Lier ◽  
J. T. Bjerkholt ◽  
O. G. Lindholm

Climate change is expected to lead to an increased frequency and intensity of extreme precipitation events. For urban drainage, the primary adverse effects are more frequent and severe sewer overloading and flooding in urban areas, and higher discharges through combined sewer overflows (CSO). For assessing the possible effects of climate change, urban drainage models are run with climate-change-adjusted input data. However, current climate models are run on a spatial–temporal scale that is too coarse to resolve processes relevant to urban drainage modelling, in particular convective precipitation events. In the work reported here the delta-change method was used to develop a high-resolution time series of precipitation for the period 2071–2100 based on a recently produced climate model precipitation time series for Oslo. The present and future performance of the sewer networks was determined using MOUSE software. The simulations indicated future increases in annual CSO discharge of 33% when comparing years of maximum annual runoff. There is also an 83% increase in annual CSO discharge when comparing years of maximum annual precipitation. In addition, there are increases in the flooding of manholes and increased levels of backwater in pipes, which translates into more flooding of basements.


Neurosonology ◽  
2010 ◽  
Vol 23 (2-3) ◽  
pp. 107-111
Author(s):  
Hirofumi SHIMADA ◽  
Masahiro YASAKA ◽  
Hideaki TAKAHATA ◽  
Keisuke TSUTSUMI ◽  
Fumitaka SONODA

The Ring ◽  
2015 ◽  
Vol 37 (1) ◽  
pp. 3-18
Author(s):  
Leonid Dinevich

Abstract The algorithm for bird radar echo selection was developed in Israel and has been successfully used for many years to monitor birds in periods of massive intercontinental migration in order to ensure flight safety in civil and military aviation. However, it has been found that under certain meteorological conditions the bird echo selection algorithm does not filter out false signals formed by atomized clouds and atmospheric inhomogeneities. Although the algorithm is designed to identify and sift false signals, some useful echoes from smaller birds are erroneously sifted as well. This paper presents some additional features of radar echoes reflected from atmospheric formations that can be taken into account to prevent the loss of useful bird echoes. These additional features are based on the use of polarization, fluctuation and Doppler characteristics of a reflected signal. By taking these features into account we can reduce the number of false signals and increase the accuracy of the bird echo selection algorithm. The paper presents methods for using radar echoes to identify species and sizes of birds, together with recommendations on using the data to ensure flight safety during periods of massive intercontinental bird migration.


2021 ◽  
Author(s):  
Carol Tamez Melendez ◽  
Judith Meyer ◽  
Audrey Douinot ◽  
Günter Blöschl ◽  
Laurent Pfister

<p>Flash flood events have caused massive damage on multiple occasions between 2016 and 2018 in several catchments in eastern Luxembourg. This region is very well known for being exposed to large-scale winter floods, commonly triggered by long-lasting advective precipitation events related to westerly atmospheric fluxes. However, flash floods - a truly exceptional phenomenon in this region - are have solely occurred in summer in response to intense convective precipitation events. Thus, because of the rare occurrence and local character of this type of events, the mechanisms eventually controlling a flash flood-type response of a catchment remains poorly understood.  </p><p>Here, we focus on four main objectives: i) the role that physiographic characteristics play on the spatial variability of pre-event hydrological states (as expressed via storage) across a set of 41 nested catchments located in the Sûre River basin (4,240 km<sup>2</sup>), Luxembourg, ii) the hydrological response to precipitation controlled by those pre-event hydrological states, iii) the responsivity (resistance) and elasticity (resilience) of the catchments to global change, and iv) the relation between water yields and the offsets from Budyko curve and its related energy limits.</p><p>The area of interest is not only characterised by a homogenous temperate oceanic climate but also by heterogeneous physiographical conditions and land use, which makes it ideal for this study. We used 8 years’ worth hydrological data (precipitation, discharge and potential evapotranspiration) to calculate the increments of the water balance and determine the maximum storage capacity and storage deficits. Second, we used the relationship between storage deficit and discharge to estimate total storage at a hypothetical nearly zero flow condition. Third, we compared the pre-hydrological states and event runoff ratios (Q/P) to the catchments’ physiographical conditions in order to link catchment’s sensitivity to storage metrics. We then assessed the responsivity and elasticity to climate and anthropogenic variations – as expressed through the PET/P and AET/P deviations from the Budyko curve and energy limits– for each individual catchment. Finally, we investigated the catchment’s area control on responsivity, elasticity, water yields and Budyko’s elements across our set of 41 nested catchments.</p>


1965 ◽  
Vol 46 (8) ◽  
pp. 443-447 ◽  
Author(s):  
Edwin Kessler ◽  
Jean T. Lee ◽  
Kenneth E. Wilk

Aircraft have been guided with the aid of radar data to measure turbulence in thunderstorm areas. Although turbulence is frequently encountered in areas containing highly reflective and sharp-edged echoes, no unique correspondence has been discovered between single-echo parameters and collocated within-storm turbulence. A theory embracing some of the time-dependent relationships between fields of wind and precipitation suggests that the correspondence between instantaneous distributions of radar echoes and turbulence is statistical rather than precise. Statistical bases for study of radar echo-turbulence relationships are outlined.


2013 ◽  
Vol 10 (4) ◽  
pp. 855-859 ◽  
Author(s):  
Yinguang Li ◽  
Guifu Zhang ◽  
Richard Doviak ◽  
Darcy Saxion

The scan-to-scan correlation method to discriminate weather signals from ground clutter, described in this letter, takes advantage of the fact that the correlation time of radar echoes from hydrometeors is typically much shorter than that from ground objects. In this letter, the scan-to-scan correlation method is applied to data from the WSR-88D, and its results are compared with those produced by the WSR-88D's ground clutter detector. A subjective comparison with an operational clutter detection algorithm used on the network of weather radars shows that the scan-to-scan correlation method produces a similar clutter field but presents clutter locations with higher spatial resolution.


2018 ◽  
Author(s):  
Toni Mitovski ◽  
Jason N. S. Cole ◽  
Norman A. McFarlane ◽  
Knut von Salzen ◽  
Guang J. Zhang

Abstract. Changes in the large-scale environment during convective precipitation events in the Tropical Western Pacific simulated by version 4.3 of the Canadian Atmospheric Model (CanAM4.3) is compared against those simulated by version 5.0 of the super parameterized Community Atmosphere Model (spCAM5). This is done by compositing sub-hourly output of convective rainfall, convective available potential energy (CAPE), CAPE generation due to large-scale forcing in the free troposphere (dCAPELSFT), and near surface vertical velocity (ω) over the time period May–July 1997. Compared to spCAM5, CanAM4.3 tends to produce more frequent light convective precipitation ( 2 mm h−1). In spCAM5 5 % of convective precipitation events lasted less than 1.5 h and 75 % lasted between 1.5 and 3.0 h while in CanAM4.3 80 % of the events lasted less than 1.5 h. Convective precipitation in spCAM5 is found to be a function of dCAPELSFT and the large-scale near surface ω with variations in ω slightly leading variations in convective precipitation. Convective precipitation in CanAM4.3 does not have the same dependency and instead is found to be a function of CAPE.


Sign in / Sign up

Export Citation Format

Share Document