Spatial coherence of interplanetary coronal mass ejection-driven sheaths at 1 AU

Author(s):  
Matti Ala-Lahti ◽  
Julia Ruohotie ◽  
Simon Good ◽  
Emilia Kilpua ◽  
Noé Lugaz

<p><span>We report on the longitudinal coherence of sheath regions driven by interplanetary coronal mass ejections (ICMEs). ICME sheaths are significant drivers of geomagnetic activity at the Earth, with a considerable fraction of ICME-driven storms being either entirely or primarily induced by the sheath. Similarly to Lugaz et al. (2018; doi:10.3847/2041-8213/aad9f4</span><span>), we have analyzed two-point magnetic field measurements made by the ACE and <em>Wind </em>spacecraft in 29 ICME sheaths to estimate the coherence scale lengths, defined as the spatial scale at which correlation between measurements falls to zero, of the field magnitude and components. Scale lengths for the sheath are found to be mostly smaller than the corresponding values in the ICME driver, an expected result given that ICME sheaths are characterized by highly fluctuating, variable magnetic fields, in contrast to the often more coherent ejecta. A relatively large scale length for the magnetic field component in the GSE <em>y</em>-direction was found. We discuss how magnetic field line draping around the ejecta and the alignment of pre-existing magnetic structures by the preceding shock may explain the observed results. In addition, we consider the existence of longitudinally extended and possibly geoeffective magnetic field fluctuations within ICME sheaths, the full understanding of which requires further multi-spacecraft analysis.</span></p>

2020 ◽  
Author(s):  
Zoltan Vörös ◽  
Emiliya Yordanova ◽  
Owen Roberts ◽  
Yasuhito Narita

<p>Twisted magnetic flux ropes embedded in an interplanetary coronal mass ejection (ICME) often contain oppositely oriented magnetic fields and potentially reconnecting current sheets. Reconnection outflows in the solar wind can be identified through magnetic field and plasma signatures, for example, through decreasing magnetic field magnitude, enhanced bulk velocity, temperature and (anti)correlated rotations of the magnetic field and plasma velocity. We investigate a reconnection outflow observed by ACE, WIND and Geotail spacecraft within the interaction region of two flux ropes embedded into an ICME. The SOHO spacecraft, located 15 RE upstream, 120 RE in GSE Y and 5 RE in GSE Z direction from the ACE spacecraft, does not see any plasma signatures of the reconnection outflow. At the same time the other spacecraft, also separated by more than 200 RE in X and Y GSE directions, observe strong plasma and magnetic field fluctuations at the border of the exhaust.  The fluctuations could be associated with Kelvin-Helmholtz (KH) instability at the border of the reconnection outflow with strong flow shear.  It is speculated that the KH instability driven fluctuations and dissipation is responsible for stopping the reconnection outflow which is therefore not seen by SOHO.</p>


2016 ◽  
Vol 34 (2) ◽  
pp. 313-322 ◽  
Author(s):  
Erika Palmerio ◽  
Emilia K. J. Kilpua ◽  
Neel P. Savani

Abstract. Planar magnetic structures (PMSs) are periods in the solar wind during which interplanetary magnetic field vectors are nearly parallel to a single plane. One of the specific regions where PMSs have been reported are coronal mass ejection (CME)-driven sheaths. We use here an automated method to identify PMSs in 95 CME sheath regions observed in situ by the Wind and ACE spacecraft between 1997 and 2015. The occurrence and location of the PMSs are related to various shock, sheath, and CME properties. We find that PMSs are ubiquitous in CME sheaths; 85 % of the studied sheath regions had PMSs with the mean duration of 6 h. In about one-third of the cases the magnetic field vectors followed a single PMS plane that covered a significant part (at least 67 %) of the sheath region. Our analysis gives strong support for two suggested PMS formation mechanisms: the amplification and alignment of solar wind discontinuities near the CME-driven shock and the draping of the magnetic field lines around the CME ejecta. For example, we found that the shock and PMS plane normals generally coincided for the events where the PMSs occurred near the shock (68 % of the PMS plane normals near the shock were separated by less than 20° from the shock normal), while deviations were clearly larger when PMSs occurred close to the ejecta leading edge. In addition, PMSs near the shock were generally associated with lower upstream plasma beta than the cases where PMSs occurred near the leading edge of the CME. We also demonstrate that the planar parts of the sheath contain a higher amount of strong southward magnetic field than the non-planar parts, suggesting that planar sheaths are more likely to drive magnetospheric activity.


1989 ◽  
Vol 136 ◽  
pp. 243-263 ◽  
Author(s):  
F. Yusef-Zadeh

Recent studies of the Galactic center environment have revealed a wealth of new thermal and nonthermal features with unusual characteristics. A system of nonthermal filamentary structures tracing magnetic field lines are found to extend over 200pc in the direction perpendicular to the Galactic plane. Ionized structures, like nonthermal features, appear filamentary and show forbidden velocity fields in the sense of Galactic rotation and large line widths. Faraday rotation characteristics and the flat spectral index distributions of the nonthermal filaments suggest a mixture of thermal and nonthermal gas. Furthermore, the relative spatial distributions of the magnetic structures with respect to those of the ionized and molecular gas suggest a physical interaction between these two systems. In spite of numerous questions concerning the origin of the large-scale organized magnetic structures, the mechanism by which particles are accelerated to relativistic energies, and the source or sources of heating the dust and gas, recent studies have been able to distinguish the inner 200pc of the nucleus from the disk of the Galaxy in at least two more respects: (1) the recognition that the magnetic field has a large-scale structure and is strong, uniform and dynamically important; and (2) the physics of interstellar matter may be dominated by the poloidal component of the magnetic field.


2009 ◽  
Vol 27 (2) ◽  
pp. 869-875 ◽  
Author(s):  
E. Marsch ◽  
S. Yao ◽  
C.-Y. Tu

Abstract. The plasma and magnetic-field instruments on the Helios 2 spacecraft, which was on 3 April 1979 located at 0.68 AU, detected an interplanetary coronal mass ejection (ICME) that revealed itself by the typical signature of magnetic field rotation. The solar wind flow speed ranged between 400 and 500 km/s. We present here some detailed proton velocity distributions measured within the ICME. These cold distributions are characterized by an isotropic core part with a low temperature, T≤105 K, but sometimes reveal a broad and extended hot proton tail or beam propagating along the local magnetic field direction. These beams lasted only for about an hour and were unusual as compared with the normal ICME protons distribution which were comparatively isotropic. Furthermore, we looked into the velocity and field fluctuations in this ICME and found signatures of Alfvén waves, which might be related to the occurrence of the hot proton beams. However, it cannot be excluded that the beam originated from the Sun.


2013 ◽  
Vol 8 (S300) ◽  
pp. 139-146 ◽  
Author(s):  
Sarah Gibson

AbstractMagnetism defines the complex and dynamic solar corona. Twists and tangles in coronal magnetic fields build up energy and ultimately erupt, hurling plasma into interplanetary space. These coronal mass ejections (CMEs) are transient riders on the ever-outflowing solar wind, which itself possesses a three-dimensional morphology shaped by the global coronal magnetic field. Coronal magnetism is thus at the heart of any understanding of the origins of space weather at the Earth. However, we have historically been limited by the difficulty of directly measuring the magnetic fields of the corona, and have turned to observations of coronal plasma to trace out magnetic structure. This approach is complicated by the fact that plasma temperatures and densities vary among coronal magnetic structures, so that looking at any one wavelength of light only shows part of the picture. In fact, in some regimes it is the lack of plasma that is a significant indicator of the magnetic field. Such a case is the coronal cavity: a dark, elliptical region in which strong and twisted magnetism dwells. I will elucidate these enigmatic features by presenting observations of coronal cavities in multiple wavelengths and from a variety of observing vantages, including unprecedented coronal magnetic field measurements now being obtained by the Coronal Multichannel Polarimeter (CoMP). These observations demonstrate the presence of twisted magnetic fields within cavities, and also provide clues to how and why cavities ultimately erupt as CMEs.


2000 ◽  
Vol 18 (2) ◽  
pp. 129-140 ◽  
Author(s):  
O. Malandraki ◽  
E. T. Sarris ◽  
P. Trochoutsos

Abstract. In this work, solar flare energetic particle fluxes (Ee ≥ 42 keV) observed by the HI-SCALE instrument onboard Ulysses, a spacecraft that is probing the heliosphere in 3-D, are utilized as diagnostics of the large-scale structure and topology of the interplanetary magnetic field (IMF) embedded within two well-identified interplanetary coronal mass ejection (ICME) structures. On the basis of the energetic solar flare particle observations firm conclusions are drawn on whether the detected ICMEs have been detached from the solar corona or are still magnetically anchored to it when they arrive at 2.5 AU. From the development of the angular distributions of the particle intensities, we have inferred that portions of the ICMEs studied consisted of both open and closed magnetic field lines. Both ICMEs present a filamentary structure comprising magnetic filaments with distinct electron anisotropy characteristics. Subsequently, we studied the evolution of the anisotropies of the energetic electrons along the magnetic field loop-like structure of one ICME and computed the characteristic decay time of the anisotropy which is a measure of the amount of scattering that the trapped electron population underwent after injection at the Sun.Key words: Interplanetary physics (energetic particles; interplanetary magnetic fields)


2020 ◽  
Vol 893 (2) ◽  
pp. 110 ◽  
Author(s):  
S. W. Good ◽  
M. Ala-Lahti ◽  
E. Palmerio ◽  
E. K. J. Kilpua ◽  
A. Osmane

1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


Sign in / Sign up

Export Citation Format

Share Document