scholarly journals Multi-stage arc magma evolution recorded by apatite in volcanic rocks

Author(s):  
Chetan Nathwani ◽  
Matthew Loader ◽  
Jamie Wilkinson ◽  
Yannick Buret ◽  
Robert Sievwright ◽  
...  

<p>The chemical diversity observed in the rock record of volcanic arcs is determined by a multitude of processes operating between the magma source region and the surface. A fundamental step in producing this variability is fractional crystallisation, assimilation and melting in the lower crust which drives magmas to more evolved and hydrous compositions. During extensive fractionation of hydrous magmas in the lower crust, amphibole (± garnet) is stabilized in the fractionating assemblage and plagioclase is suppressed resulting in melts with elevated Sr, an absence of strong negative Eu anomalies (both elements being compatible in plagioclase), and depleted Y (compatible in amphibole and garnet). The high Sr/Y values that result can be used to provide insights into arc magma evolution, evaluate whether a magmatic system has the potential to form a porphyry-related ore deposit and track crustal thickness. However, this deep fractionation history may be obscured due to differentiation and mixing upon ascent to the shallow crust. Since arc rocks are a product of this multi-stage, polybaric process, unravelling the complete history of magmatic evolution using bulk-rock chemistry alone can be challenging. However, accessory minerals such as apatite, are capable of capturing discrete periods of melt evolution during differentiation [1]. For example, apatite has been shown to record the Sr content of the melt at the time of its crystallization which has been used to reconstruct host rock compositions in provenance studies [2, 3].</p><p>Here, we use a novel approach to track the petrogenesis of arc magmas using apatite trace element chemistry in volcanic formations from the Cenozoic arc of Central Chile. These rocks formed during magmatism that culminated in high Sr/Y magmas and porphyry ore deposit formation in the Miocene. We use Sr/Y, Eu/Eu* and Mg in apatite to demonstrate that apatite tracks the multi-stage differentiation of arc magmas. We apply fractional crystallization modelling to show that early crystallizing apatite inherits a high Sr/Y and Eu/Eu* melt chemistry signature that is predetermined by amphibole-dominated fractional crystallization in the lower crust. Our modelling shows that crystallisation of the in-situ host rock mineral assemblage in the shallow crust causes competition for trace elements in the melt that leads to apatite compositions diverging from bulk magma chemistry. Understanding this decoupling behaviour is important for the use of apatite as an indicator of metallogenic fertility in arcs and for interpretation of provenance in detrital studies. We suggest our approach is widely applicable for unravelling the composite evolution of arc magmas and studying magmatic processes conducive to porphyry ore deposit formation.</p><p>References</p><p>[1] Miles, A.J., Graham, C.M., Hawkesworth, C.J., Gillespie, M.R., and Hinton, R.W., 2013, Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon: Contributions to Mineralogy and Petrology.</p><p>[2] Jennings, E.S., Marschall, H.R., Hawkesworth, C.J., and Storey, C.D., 2011, Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so: Geology.</p><p>[3] Bruand, E., Storey, C., and Fowler, M., 2016, An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance: Geology, v. 44, p. 91–94.</p>

Geology ◽  
2020 ◽  
Vol 48 (4) ◽  
pp. 323-327 ◽  
Author(s):  
Chetan L. Nathwani ◽  
Matthew A. Loader ◽  
Jamie J. Wilkinson ◽  
Yannick Buret ◽  
Robert H. Sievwright ◽  
...  

Abstract Protracted magma storage in the deep crust is a key stage in the formation of evolved, hydrous arc magmas that can result in explosive volcanism and the formation of economically valuable magmatic-hydrothermal ore deposits. High magmatic water content in the deep crust results in extensive amphibole ± garnet fractionation and the suppression of plagioclase crystallization as recorded by elevated Sr/Y ratios and high Eu (high Eu/Eu*) in the melt. Here, we use a novel approach to track the petrogenesis of arc magmas using apatite trace element chemistry in volcanic formations from the Cenozoic arc of central Chile. These rocks formed in a magmatic cycle that culminated in high-Sr/Y magmatism and porphyry ore deposit formation in the Miocene. We use Sr/Y, Eu/Eu*, and Mg in apatite to track discrete stages of arc magma evolution. We apply fractional crystallization modeling to show that early-crystallizing apatite can inherit a high-Sr/Y and high-Eu/Eu* melt chemistry signature that is predetermined by amphibole-dominated fractional crystallization in the lower crust. Our modeling shows that crystallization of the in situ host-rock mineral assemblage in the shallow crust causes competition for trace elements in the melt that leads to apatite compositions diverging from bulk-magma chemistry. Understanding this decoupling behavior is important for the use of apatite as an indicator of metallogenic fertility in arcs and for interpretation of provenance in detrital studies.


Author(s):  
Chen-Hao Luo ◽  
Rui Wang ◽  
Roberto F. Weinberg ◽  
Zengqian Hou

Crustal growth is commonly associated with porphyry deposit formation whether in continental arcs or collisional orogens. The Miocene high-K calc-alkaline granitoids in the Gangdese belt in southern Tibet, associated with porphyry copper deposits, are derived from the juvenile lower crust with input from lithospheric mantle trachytic magmas, and are characterized by adakitic affinity with high-Sr/Y and La/Yb ratios as well as high Mg# and more evolved isotopic ratios. Researchers have argued, lower crust with metal fertilization was mainly formed by previous subduction-related modification. The issue is that the arc is composed of three stages of magmatism including Jurassic, Cretaceous, and Paleocene−Eocene, with peaks of activity at 200 Ma, 90 Ma, and ca. 50 Ma, respectively. All three stages of arc growth are essentially similar in terms of their whole-rock geochemistry and Sr-Nd-Hf isotopic compositions, making it difficult to distinguish Miocene magma sources. This study is based on ∼430 bulk-rock Sr-Nd isotope data and ∼270 zircon Lu-Hf isotope data and >800 whole-rock geochemistry analyses in a 900-km-long section of the Gangdese belt. We found large scale variations along the length of the arc where the Nd-Hf isotopic ratios of the Jurassic, Cretaceous, and Paleocene−Eocene arc rocks change differently from east to west. A significant feature is that the spatial distribution of Nd-Hf isotopic values of the Paleocene−Eocene arc magmas and the Miocene granitoids, including metallogenic ones, are “bell-shaped” from east to west, with a peak of εNd(t) and εHf(t) at ∼91°E. In contrast, the Jurassic and Cretaceous arc magmas have different isotopic distribution patterns as a function of longitude. The isotopic spatial similarity of the Paleocene−Eocene and Miocene suites suggests that the lower crust source of the metallogenic Miocene magmas is composed dominantly of the Paleocene−Eocene arc rocks. This is further supported by abundant inherited zircons dominated by Paleocene−Eocene ages in the Miocene rocks. Another important discovery from the large data set is that the Miocene magmatic rocks have higher Mg# and more evolved Sr-Nd-Hf isotopic compositions than all preceding magmatic arcs. These characteristics indicate that the involvement of another different source was required to form the Miocene magmatic rocks. Hybridization of the isotopically unevolved primary magmas with isotopically evolved, lithospheric mantle-derived trachytic magmas is consistent with the geochemical, xenolith, and seismic evidence and is essential for the Miocene crustal growth and porphyry deposit formation. We recognize that the crustal growth in the collisional orogen is a two-step process, the first is the subduction stage dominated by typical magmatic arc processes leading to lower crust fertilization, the second is the collisional stage dominated by partial melting of a subduction-modified lower crust and mixing with a lithospheric mantle-derived melt at the source depth.


2002 ◽  
Vol 43 (12) ◽  
pp. 2191-2217 ◽  
Author(s):  
A. FORNELLI

2006 ◽  
Vol 70 (18) ◽  
pp. A21
Author(s):  
R.J. Arculus
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document