inDust: International Network to encourage the use of monitoring and forecasting DUST products

Author(s):  
Sara Basart ◽  
Slodoban Nickovic ◽  

<p>Sand and Dust Storms (SDS) are extreme meteorological phenomena that generate significant amounts of airborne mineral dust particles. SDS plays a significant role in different aspects of weather, climate and atmospheric chemistry. Also, SDS represents a severe hazard for life, health, property, environment and economy, which is aligned with several Sustainable Developed Goal (SDG) targets established by the United Nations (UN). Understanding, managing, and mitigating SDS risks and effects requires fundamental and cross-disciplinary knowledge.</p><p>Over the last few years, there is an increasing need for SDS accurate information and predictions to support early warning systems, and preparedness and mitigation plans in addition to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and policymakers from environmental and health public sectors. Current attempts to transfer tailored products to end-users are not coordinated, and the same technological and social obstacles are tackled individually by all different groups, a process that makes the use of data slow and expensive.</p><p>The EU-funded COST Action inDust (www.cost-indust.eu, CA16202) has an overall objective to establish a network involving research institutions, service providers and potential end-users of information on airborne dust that can assist the diverse socio-economic sectors affected by the presence of high concentrations of atmospheric dust. In line with this main objective, the network is being worked on the identification and engagement of representatives of dust affected socio-economic sectors (targeting on air quality and health, aviation and solar energy) from different countries in Europe but also in North Africa and the Middle East. Moreover, the participation of South African, American and importantly Asian partners brings the possibility of extending the application of the developed products, protocols and tools well beyond the European borders, including areas like Asian regions where dust particles play a significant role in the air quality and meteorological processes.</p><p>The primary outcomes of the network are the identification of the needs of the various and new dust-related products and services able to satisfy these needs. As a result, the network has been working on a dust catalogue which includes an overview of (ground-based and satellite) observations and model products.</p>

2020 ◽  
pp. 1-15
Author(s):  
Anca Nemuc ◽  
Sara Basart ◽  
Aurelio Tobias ◽  
Slobodan Nickovic ◽  
Francesca Barnaba ◽  
...  

Amongst the most significant extreme meteorological phenomena are the Sand and Dust Storms (SDS). Owing to significant amounts of airborne mineral dust particles generated during these events, SDS have impacts on climate, the environment, human health, and many socio-economic sectors (e.g. aviation, solar energy management). Many studies and reports have underlined that the society has to understand, manage and mitigate the risks and effects of SDS on life, health, property, the environment and the economy in a more unified way. The EU-funded European Cooperation in Science and Technology (COST) Action ‘InDust: International network to encourage the use of monitoring and forecasting Dust products’ has an overall objective to establish a network involving research institutions, service providers and potential end users on airborne dust information. We are a multidisciplinary group of international experts on aerosol measurements, aerosol modelling, stakeholders and social scientists working together, exchanging ideas to better coordinate and harmonize the process of transferring dust observation and prediction data to users, as well as to assist the diverse socio-economic sectors affected by the presence of high concentrations of airborne mineral dust. This article highlights the importance of being actively engaged in research networking activities, supported by EU and COST actions since common efforts help not only each scientist by shaping their expertise and strengthening their position, but also all communities.


2021 ◽  
Author(s):  
Athanasios Votsis ◽  
Sara Basart ◽  
Francesca Barnaba ◽  
Enza Di Tomaso ◽  
Anders Lindfors ◽  
...  

<p>Sand and Dust Storms (SDS) are extreme meteorological phenomena associated with high amounts of atmospheric mineral dust. SDS are an essential element of the Earth’s natural biogeochemical cycles but are also partly caused by human factors including anthropogenic climate change and unsustainable land and water management; in turn, SDS contribute to climate change and air pollution. SDS have become a serious global concern in recent decades due to their significant impacts on the environment, health, agriculture, livelihoods, and the economy. The impacts are felt throughout the developed and developing world and their mitigation is aligned with several of the United Nations’ Sustainable Development Goals. There has been an ever-increasing need for accurate information and predictions on SDS—particularly over desert regions such as the Sahara and in the Middle East—to support early warning systems as well as preparedness and mitigation plans, in addition to growing interest from diverse stakeholders and policymakers in the solar energy, health, environment and aviation sectors. </p><p>The ongoing <strong>ERA4CS ‘Dust Storms Assessment for the development of user-oriented Climate services in Northern Africa, the Middle East and Europe’ (DustClim)</strong> project is enhancing our knowledge of the ways SDS affect society by producing and delivering an advanced dust regional model reanalysis for N. Africa, the Middle East and Europe, based on the MONARCH chemical weather prediction system (Pérez et al. 2011; Di Tomaso et al. 2017) and satellite retrievals over dust source regions, and by developing dust-related services tailored to strategic planning, operations, and policy-making in the air quality, aviation, and solar energy sectors.  </p><p>In this contribution, we will present how the resulting dust reanalysis is used as the basis to understand the mid-to-long-term impacts and implications of operating (and regulating) in risky sand and dust environments, namely: (1) the mineral dust component of air quality and its health and regulatory implications; (2) aircraft and airport operations, maintenance and planning; (3) strategic investment and operations optimization in solar energy. We will present our development approach that integrates scientific, industrial and regulatory knowledge, addressing ‘objective threats’ in dialogue with industry partners and public stakeholders (Votsis et al. 2020). Finally, we present an overview of the developed portfolio of SDS climate services for the three aforementioned sectors.</p><p><strong>Acknowledgment </strong></p><p>The authors acknowledge DustClim project, part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (435690462); PRACE (eDUST, eFRAGMENT1, eFRAGMENT2); RES (AECT-2020-3-0013) for awarding access to MareNostrum at BSC and for technical support.</p><p><strong>References</strong></p><p>Di Tomaso, E. et al. (2017): Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0, Geosci. Model Dev., 10, 1107-1129, doi:10.5194/gmd-10-1107-2017.</p><p>Pérez, C. et al. (2011): An online mineral dust aerosol model for meso to global scales: Model description, annual simulations and evaluation, Atmos. Chem. Phys., 11, 13001-13027, doi: 10.5194/acp-11-13001-2011.</p><p>Votsis, A. et al. (2020): Operational risks of sand and dust storms in aviation and solar energy: the DustClim approach, FMI's Climate Bulletin: Research Letters 1/2020, doi: 10.35614/ISSN-2341-6408-IK-2020-02-RL.</p>


2018 ◽  
Author(s):  
Lu She ◽  
Yong Xue ◽  
Jie Guang ◽  
Yahui Che ◽  
Cheng Fan ◽  
...  

Abstract. The deserts in East Asia are one of the most influential mineral dust source regions in the world. Large amounts of dust particles are emitted and transported to distant regions. A super dust storm characterized by long-distance transport occurred over the Pan-Eurasian Experiment (PEEX) area in early May 2017. In this study, multi-satellite/sensor observations and ground-based measurements combined with the HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model were used to analyse the dynamical processes of the origin and transport of the strong dust storm. The optical and microphysical properties of the dust particles were analysed using Aerosol Robotic Network (AERONET) measurements. From the multi-satellite observations, the dust storms were suggested to have originated from the Gobi Desert on the morning of 3 May 2017, and it transported dust northeastward to the Bering Sea, eastward to the Korean Peninsula and Japan, and southward to southern Central China. The air quality in China drastically deteriorated as a result of this heavy dust storm; the PM10 (particulate matter less than 10 mm in aerodynamic diameter) concentrations measured at some air quality stations located in northern China reached 4000 μg/m3. During the dust event, the maximum AOD values reached 3, 2.3, 2.8, and 0.65 with sharp drops in the extinction Ångström exponent (EAE) to 0.023, 0.068, 0.03, and 0.097 at AOE_Baotou, Beijing, Xuzhou-CUMT, and Ussuriysk, respectively. The dust storm introduced great variations in the aerosol property, causing totally different spectral single-scattering albedo (SSA) and volume size distribution (VSD). The combined observations revealed comprehensive information about the dynamic transport of dust and the dust affected regions, and the effect of dust storms on the aerosol properties.


2019 ◽  
Author(s):  
Siqi Ma ◽  
Xuelei Zhang ◽  
Chao Gao ◽  
Daniel Q. Tong ◽  
Aijun Xiu ◽  
...  

Abstract. Mineral dust particles play an important role in the Earth system, imposing a variety of effects on air quality, climate, human health, and economy. Accurate forecasts of dust events are highly desirable to provide early-warning and inform decision-making. East Asia is one of the largest dust sources in the world. This study applies and evaluates four widely used regional air quality models to simulate dust storms in East Asia. Three dust schemes in the Weather Research and Forecast with Chemistry (WRF-Chem) (version 3.9.1), two schemes in CHIMERE (version 2017r4) and CMAQ (version 5.2), and one scheme in CAMx (version 6.50), were applied to a dust event during May 4th~6th, 2015 in Northeastern China. Most of these models were able to capture this dust event, except CAMx which has no dust source map covering the study area, hence is excluded from subsequent analysis. Although these models reproduced the spatial pattern of the dust plume, there were large discrepancies between predicted and observed PM10 concentrations in each model. In general, CHIMERE had relatively better performance among all simulations with default configurations. After parameter tuning, WRF-Chem with the AFWA scheme using seasonal dust source map from Ginoux et al. (2012) showed the best performance, followed by WRF-Chem with UOC_Shao2011 scheme, CHIMERE, and CMAQ. This study suggested that the dust source maps should be carefully selected or replaced with a new one constructed with local data. Moreover, further study and measurement on sandblasting efficiency of different soil types and locations should be conducted to improve the accuracy of estimated vertical dust flux in air quality models.


2019 ◽  
Vol 99 ◽  
pp. 04008 ◽  
Author(s):  
Sara Basart ◽  
Slobodan Nickovic ◽  
Enric Terradellas ◽  
Emilio Cuevas ◽  
Carlos Pérez García-Pando ◽  
...  

Sand and dust storms (SDS) are an important threat to life, health, property, environment and economy in many countries, and play a significant role in different aspects of weather, climate and atmospheric chemistry. There is an increasing need for SDS accurate information and predictions to support early warning systems, and preparedness and mitigation plans. The present contribution introduces the current activities of the Regional Center for Northern Africa, Middle East and Europe of the WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The Center has the mission is to enhance the ability of countries in the region to deliver timely and quality SDS forecasts, observations, information and knowledge to users through an international partnership of research and operational communities.


2019 ◽  
Vol 12 (11) ◽  
pp. 4603-4625 ◽  
Author(s):  
Siqi Ma ◽  
Xuelei Zhang ◽  
Chao Gao ◽  
Daniel Q. Tong ◽  
Aijun Xiu ◽  
...  

Abstract. Mineral dust particles play an important role in the Earth system, imposing a variety of effects on air quality, climate, human health, and economy. Accurate forecasts of dust events are highly desirable to provide an early warning and inform the decision-making process. East Asia is one of the largest dust sources in the world. This study applies and evaluates four widely used regional air quality models to simulate dust storms in northeastern China. Three dust schemes in the Weather Research and Forecasting model with Chemistry (WRF-Chem) (version 3.9.1), two schemes in both CHIMERE (version 2017r4) and CMAQ (version 5.2.1), and one scheme in CAMx (version 6.50) were applied to a dust event during 4–6 May 2015 in northeastern China. Most of these models were able to capture this dust event with the exception of CAMx, which has no dust source map covering the study area; hence, another dust source mask map was introduced to replace the default one for the subsequent simulation. Although these models reproduced the spatial pattern of the dust plume, there were large discrepancies between predicted and observed PM10 concentrations in each model. In general, CHIMERE had relatively better performance among all simulations with default configurations. After parameter tuning, WRF-Chem with the Air Force Weather Agency (AFWA) scheme using a seasonal dust source map from Ginoux et al. (2012) showed the best performance, followed by WRF-Chem with the UOC_Shao2004 scheme, CHIMERE, and CMAQ. The performance of CAMx had significantly improved by substituting the default dust map and removing the friction velocity limitation. This study suggested that the dust source maps should be carefully selected on a regional scale or replaced with a new one constructed with local data. Moreover, further study and measurement of sandblasting efficiency of different soil types and locations should be conducted to improve the accuracy of estimated vertical dust fluxes in air quality models.


Author(s):  
Yogesh Awasthi

Agriculture is the backbone of the developing country. In old era agriculture was based on the experience which was shared by people to people but in this digital era technology play a very important and significant role in agriculture. Now agriculture become a business hub therefore farmers are focusing on precision farming. They introduced the technology in agriculture to define the accurate information about seed, soil, weather, disease and all factors which affecting the farming. Artificial Intelligence uses predictive analysis, image analysis, learning techniques and Pattern analysis to declare the best cost effective and maximum gain for the agriculturist. The aim of this paper is to provide the crucial information with the help of technology which a farmers can use to harvest the variety of crops as per the demand in world so that they can get maximum benefits.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
◽  

Abstract Patient information material (PIM) is omnipresent in healthcare. It is used to convey information or to familiarize potential end-users to offers of support. PIM recaps or elaborates on relevant information and offers recommendation for action. However, the quality of available PIM varies. When the formal and content-related quality of PIM is suboptimal, it not only fails to be effective but can also lead to uncertainty, misunderstandings, resistance or ignorance (e.g. of a support offer). Highly complex information requires much attention on the quality of the PIM, especially with respect to end-users (e.g. vulnerable groups). Excellent communication through the use of PIM is thus essential within complex interventions. Checklists, such as 'Discern' or 'PEMAT', as well as criteria catalogues or evidence-based patient information standards, may assist in the development, quality assessment and optimization of PIM. The inclusion of the end-users is recommended but for various reasons does not often take place. The innovative “integrated, cross-sectional Psycho-Oncology” (isPO) programme, offers needs-driven, professional support to all adult, newly diagnosed cancer patients early in their sickness trajectory. IsPO was developed in 2018. It was implemented and a formative evaluated in 2019. When developing this programme, different PIM were created top-down by the programme designers. During implementation, it became evident that these PIM materials required further improvement. A testing and optimization process started using the participatory health research (PHR) approach and was completed in a five-month period. A PIM-optimisation team was founded, which included the project partners involved in the network support, self-help organisations and the external evaluation institute. A practical instrument (PIM-checklist) for optimising the isPO-PIM was designed, piloted and used for testing by end-users, isPO service providers, and experts. Based on the recommendations in the checklist, the material was revised accordingly. Additionally, the PIM was completed with the design of two new components. Four optimisation rounds were conducted. The optimized PIM was tested on its comprehensibility (for end-users) and its usability (for service providers). During the presentations, the audience is invited to comment on critical questions that may appear during optimization (e.g. timing). Afterwards, there will be a skill building part with a focus on collaborative learning (45 minutes). First, we will focus on the requirements for a practical instrument that is handy for end-users, service providers and experts (mind mapping exercise). Finally, participants will be able to explore the following topics “World Café” discussion: (1) how to plan, conduct and communicate the development of optimization of PIM in a CI program, (2) what needs to be considered for the optimization (e.g. team composition, resources), and (3) how to continuously achieve end-userś participation. Key messages Excellent PIM are essential for a complex interventiońs success in practice and must include information and foster actionability. the iterative PIM design processes benefits from high user participation.


Network ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 75-94
Author(s):  
Ed Kamya Kiyemba Edris ◽  
Mahdi Aiash ◽  
Jonathan Loo

Fifth Generation mobile networks (5G) promise to make network services provided by various Service Providers (SP) such as Mobile Network Operators (MNOs) and third-party SPs accessible from anywhere by the end-users through their User Equipment (UE). These services will be pushed closer to the edge for quick, seamless, and secure access. After being granted access to a service, the end-user will be able to cache and share data with other users. However, security measures should be in place for SP not only to secure the provisioning and access of those services but also, should be able to restrict what the end-users can do with the accessed data in or out of coverage. This can be facilitated by federated service authorization and access control mechanisms that restrict the caching and sharing of data accessed by the UE in different security domains. In this paper, we propose a Data Caching and Sharing Security (DCSS) protocol that leverages federated authorization to provide secure caching and sharing of data from multiple SPs in multiple security domains. We formally verify the proposed DCSS protocol using ProVerif and applied pi-calculus. Furthermore, a comprehensive security analysis of the security properties of the proposed DCSS protocol is conducted.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 141
Author(s):  
Emilie Aragnou ◽  
Sean Watt ◽  
Hiep Nguyen Duc ◽  
Cassandra Cheeseman ◽  
Matthew Riley ◽  
...  

Dust storms originating from Central Australia and western New South Wales frequently cause high particle concentrations at many sites across New South Wales, both inland and along the coast. This study focussed on a dust storm event in February 2019 which affected air quality across the state as detected at many ambient monitoring stations in the Department of Planning, Industry and Environment (DPIE) air quality monitoring network. The WRF-Chem (Weather Research and Forecast Model—Chemistry) model is used to study the formation, dispersion and transport of dust across the state of New South Wales (NSW, Australia). Wildfires also happened in northern NSW at the same time of the dust storm in February 2019, and their emissions are taken into account in the WRF-Chem model by using Fire Inventory from NCAR (FINN) as emission input. The model performance is evaluated and is shown to predict fairly accurate the PM2.5 and PM10 concentration as compared to observation. The predicted PM2.5 concentration over New South Wales during 5 days from 11 to 15 February 2019 is then used to estimate the impact of the February 2019 dust storm event on three health endpoints, namely mortality, respiratory and cardiac disease hospitalisation rates. The results show that even though as the daily average of PM2.5 over some parts of the state, especially in western and north western NSW near the centre of the dust storm and wild fires, are very high (over 900 µg/m3), the population exposure is low due to the sparse population. Generally, the health impact is similar in order of magnitude to that caused by biomass burning events from wildfires or from hazardous reduction burnings (HRBs) near populous centres such as in Sydney in May 2016. One notable difference is the higher respiratory disease hospitalisation for this dust event (161) compared to the fire event (24).


Sign in / Sign up

Export Citation Format

Share Document