Can moisture content estimates from nuclear magnetic resonance improve optically stimulated luminescence dating - first results on Loess samples from Toshan/Iran

Author(s):  
Raphael Dlugosch ◽  
Christian Zeeden ◽  
Tobias Lauer ◽  
Sumiko Tsukamoto

<p>Dating of loess deposits using optically stimulated luminescence (OSL) enable us to extract important information about the climate during the last ~150 ka. A good estimation of the dose rate during the past is essential for OSL and depends, among others, on the history of the moisture content in the proximity of the dated sample. While the current moisture content can be measured by heating/drying, the history of the moisture variations of a sample is generally unknown. Reference values reported on similar materials and climate conditions may provide a range for the expected moisture variations in the past, but these values are generally rough guesses and not depth- and time-specific.</p><p>Nuclear magnetic resonance (NMR) relaxometry targeting the hydrogens of the pore fluid can estimate the current moisture content of a sample without heating. Additionally, the NMR relaxation time distribution yields information of the expected moisture content for a given field potential (e.g. wilting point). This can help to estimate a sample-specific range of likely moisture variation in a quick (several min) and no-invasive way.</p><p>We discuss this new approach on a loess profile from Toshan (Iran) published previously by (Lauer et al., 2017) and (Vlaminck, 2018). The later pointed out inconsistencies in the obtained age model. The estimated sample specific moisture content for the wilting point (15 to 35 wt.%) provide the low boundary for the moisture content estimate, which is higher than previously assumed (5 wt.%). The new dose rate calculated for these sample specific moisture content values lead to clearly older and more consistent ages (less age inversions).</p><p>We suggest that NMR derived moisture content data is valuable for obtaining information on the moisture content of samples. Especially the minimum moisture can be derived reliably, giving more robust water content estimates for OSL dating.</p><p><strong> </strong></p><p><strong> </strong></p><p><strong>References</strong></p><p>Lauer, T., Vlaminck, S., Frechen, M., Rolf, C., Kehl, M., Sharifi, J., Lehndorff, E., Khormali, F., 2017. The Agh Band loess-palaeosol sequence – A terrestrial archive for climatic shifts during the last and penultimate glacial–interglacial cycles in a semiarid region in northern Iran. Quaternary International, Loess, soils and climate change in Iran and vicinity 429, 13–30. https://doi.org/10.1016/j.quaint.2016.01.062</p><p>Vlaminck, S., 2018. Northeastern Iranian loess and its palaeoclimatic implications (PhD Thesis). Universität zu Köln.</p>

2019 ◽  
Vol 13 (01) ◽  
pp. 124-128 ◽  
Author(s):  
Komal Zia ◽  
Talal Siddiqui ◽  
Saqib Ali ◽  
Imran Farooq ◽  
Muhammad Sohail Zafar ◽  
...  

AbstractNuclear magnetic resonance (NMR) spectroscopy is one of the most significant analytical techniques that has been developed in the past few decades. A broad range of biological and nonbiological applications ranging from an individual cell to organs and tissues has been investigated through NMR. Various aspects of this technique are still under research, and many functions of the NMR are still pending a better understanding and acknowledgment. Therefore, this review is aimed at providing a general overview of the main principles, types of this technique, and the advantages and disadvantages of NMR spectroscopy. In addition, an insight into the current uses of NMR in the field of medicine and dentistry and ongoing developments of NMR spectroscopy for future applications has been discussed.


Author(s):  
R. M. Serra ◽  
I. S. Oliveira

For the past decade, nuclear magnetic resonance (NMR) has been established as a main experimental technique for testing quantum protocols in small systems. This Theme Issue presents recent advances and major challenges of NMR quantum information possessing (QIP), including contributions by researchers from 10 different countries. In this introduction, after a short comment on NMR-QIP basics, we briefly anticipate the contents of this issue.


2003 ◽  
Vol 217 (7) ◽  
pp. 775-782
Author(s):  
William W. Warren

AbstractAdaptation of the internally-heated autoclave technique to nuclear magnetic resonance (NMR) has permitted NMR measurements of electronically-conducting fluids at high temperatures and pressures. The history of NMR experiments on mercury, selenium, and cesium is reviewed briefly with reference to subsequent relevant research on these materials.


Sign in / Sign up

Export Citation Format

Share Document