nuclear magnetic resonance spectrometer
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adil Elik ◽  
Mustafa Tuzen ◽  
Baki Hazer ◽  
Savaş Kaya ◽  
K. P. Katin ◽  
...  

AbstractWe synthesized the poly(methyl methacrylate-co-2-aminoethyl methacrylate (PMaema) amphiphilic copolymer in a form of solid phase adsorbent. Then it was used for separation, preconcentration and determination of trace amount of As(III) ions from foods and waters with hydride generation atomic absorption spectrometry. The PMaema was characterized by fourier transform infrared spectrometer and nuclear magnetic resonance spectrometer. The adsorption of As(III) to the PMaema was also supported using computational chemistry studies. The experimental parameters (pH, PMaema amount, adsorption time and ethanol volume) were optimized using a three-level Box–Behnken design with four experimental factors. We observed linear calibration curve for the PMaema amount in the 10–500 ng L−1 range (R2 = 0.9956). Limit of detection, preconcentration factor and sorbent capacity of PMaema were equal to 3.3 ng L−1, 100 and 75.8 mg g−1, respectively. The average recoveries (spiked at 50 ng L−1) changes in the range of 91.5–98.6% with acceptable relative standard deviation less than 4.3%. After validation studies, the method was successfully applied for separation, preconcentration and determination of trace amount of As(III) from foods and waters.


2020 ◽  
Vol 15 ◽  
pp. 155892502094996
Author(s):  
Taotao Qiang ◽  
Yadong Pu ◽  
Qi Zhang

In this study, a clean and efficient down processing technology improved the bulkiness of the down fibers by two physical methods. On the one hand, amino polysiloxane compound SI-G was used to modify down fibers physically. On the other hand, the structure of down fibers keratin was changed and the elasticity of down was increased by adjusting the temperature, so the bulkiness of down fibers was improved. The results showed that the most suitable condition for down fibers in the air-blast dusting machine was a temperature of 60 ± 2°C when the SI-G dosage was 2% of the weight of down, the performance of down fibers was the best. The bulkiness increased by 49%, the cleanliness increased by 92%, and the residual fat rate did not change significantly. Evidence was provided by scanning electron microscope and energy dispersive spectrometer (SEM-EDS), nuclear magnetic resonance spectrometer (13C-NMR), X-ray Diffractometer (XRD) and Raman spectroscopy analysis. The results showed that, on the one hand, amino polysiloxane SI-G adsorbed on the down surface, making the fiber smooth, soft, and elastic. On the other hand, the conformation of down fibers keratin changed, the conformation of keratin macromolecule α-helix increased relatively, and the random crimp conformation decreased relatively, which makes the protein structure more regular and elastic, so the bulkiness of the down fibers improved.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Peter Andris ◽  
Earl F. Emery ◽  
Ivan Frollo

This article describes the measurement and evaluation of the system noise figure of a nuclear magnetic resonance spectrometer. A method was used which involved the console of the spectrometer, calibrated for real voltage (in volts), and used for noise signal digitisation and measurement. The resulting digitised signal was exported and processed, and the root mean square value calculated. This value was utilised for the noise power calculation, which was compared with the theoretical value and the noise figure calculated. The method presented enables analysis of the bandwidth of the noise. Many of the equations that are commonly used for signal processing have been derived for the specific task and require verification. We have verified the technique using a commercial console with two preamplifier pairs. The experimental data agree well with the theoretical values, confirming that the presented method is a valid, simple, and fast tool for the inspection of the spectrometer receiver.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 92 ◽  
Author(s):  
Wipark Anutrasakda ◽  
Kanyanok Eiamsantipaisarn ◽  
Duangkamon Jiraroj ◽  
Apakorn Phasuk ◽  
Thawatchai Tuntulani ◽  
...  

MCM-41- and Al-MCM-41-supported nickel phosphide nanomaterials were synthesized at two different initial molar ratios of Ni/P: 10:2 and 10:3 and were tested as heterogeneous catalysts for the one-pot conversion of cellobiose to sorbitol. The catalysts were characterized by X-ray diffractometer (XRD), N2 adsorption-desorption, scanning electron microscope (SEM), transmission electron microscope (TEM), 27Al-magnetic angle spinning-nuclear magnetic resonance spectrometer (27Al MAS-NMR), temperature programmed desorption of ammonia (NH3-TPD), temperature-programmed reduction (H2-TPR), and inductively coupled plasma optical emission spectrophotometer (ICP-OES). The characterization indicated that nickel phosphide nanoparticles were successfully incorporated into both supports without destroying their hexagonal framework structures, that the catalysts contained some or all of the following Ni-containing phases: Ni0, Ni3P, and Ni12P5, and that the types and relative amounts of Ni-containing phases present in each catalyst were largely determined by the initial molar ratio of Ni/P as well as the type of support used. For cellobiose conversion at 150 °C for 3 h under 4 MPa of H2, all catalysts showed similarly high conversion of cellobiose (89.5–95.0%). Nevertheless, sorbitol yield was highly correlated to the relative amount of phases with higher content of phosphorus present in the catalysts, giving the following order of catalytic performance of the Ni-containing phases: Ni12P5 > Ni3P > Ni. Increasing the reaction temperature from 150 °C to 180 °C also led to an improvement in sorbitol yield (from 43.5% to 87.8%).


2019 ◽  
Vol 31 (9-10) ◽  
pp. 1101-1111 ◽  
Author(s):  
Yunhua Lu ◽  
Jican Hao ◽  
Guoyong Xiao ◽  
Lin Li ◽  
Zhizhi Hu ◽  
...  

The diamine, 9,9-bis[4-(4-amino-3-hydroxylphenoxy)phenyl]fluorene (BAHPPF) was synthesized by the modified two-step method. Then, a series of acetate-containing copoly(ether-imide)s were prepared by the copolymerization of BAHPPF, 9,9-bis(4-aminophenyl)fluorene (BAF) and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) followed by chemical imidization. The structures and properties of the BAHPPF and copoly(ether-imide)s were characterized by nuclear magnetic resonance spectrometer (NMR), Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), ultraviolet-visible spectrophotometer (UV-VIS), and tensile testing. Single gas permeation performances of these copoly(ether-imide)s were also studied for five representative gases of interest including H2, O2, N2, CO2, and CH4. The experimental results showed that the copoly(ether-imide)s showed excellent optical properties with high light transmittance above 80.2% at 450 nm. The glass transition temperature of these copolymers were higher than 333°C. Their tensile strength and Young’s module also increased, and the elongation decreased with the decrease of BAHPPF. High gas permeabilities of copoly(ether-imide)s were obtained, and the ideal selectivity of CO2/CH4 was improved due to the introduction of acetate group and flexible ether linkage. These copoly(ether-imide)s could be applied to the field of optics and gas separation.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 315 ◽  
Author(s):  
Yingqi Mi ◽  
Wenqiang Tan ◽  
Jingjing Zhang ◽  
Lijie Wei ◽  
Yuan Chen ◽  
...  

Hydroxypropyltrimethyl ammonium chitosan halogenated acetates were successfully synthesized from six different haloacetic acids and hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with high substitution degree, which are hydroxypropyltrimethyl ammonium chitosan bromacetate (HACBA), hydroxypropyltrimethyl ammonium chitosan chloroacetate (HACCA), hydroxypropyltrimethyl ammonium chitosan dichloroacetate (HACDCA), hydroxypropyltrimethyl ammonium chitosan trichloroacetate (HACTCA), hydroxypropyltrimethyl ammonium chitosan difluoroacetate (HACDFA), and hydroxypropyltrimethyl ammonium chitosan trifluoroacetate (HACTFA). These chitosan derivatives were synthesized by two steps: first, the hydroxypropyltrimethyl ammonium chloride chitosan was synthesized by chitosan and 3-chloro-2-hydroxypropyltrimethyl ammonium chloride. Then, hydroxypropyltrimethyl ammonium chitosan halogenated acetates were synthesized via ion exchange. The structures of chitosan derivatives were characterized by Fourier transform infrared spectroscopy (FTIR), 1H Nuclear magnetic resonance spectrometer (1H NMR), 13C Nuclear magnetic resonance spectrometer (13C NMR), and elemental analysis. Their antifungal activities against Colletotrichum lagenarium, Fusarium graminearum, Botrytis cinerea, and Phomopsis asparagi were investigated by hypha measurement in vitro. The results revealed that hydroxypropyltrimethyl ammonium chitosan halogenated acetates had better antifungal activities than chitosan and HACC. In particular, the inhibitory activity decreased in the order: HACTFA > HACDFA > HACTCA > HACDCA > HACCA > HACBA > HACC > chitosan, which was consistent with the electron-withdrawing property of different halogenated acetates. This experiment provides a potential idea for the preparation of new antifungal drugs by chitosan.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Meden F. Isaac-Lam

Alcohol or ethanol is considered the most widely used recreational drug worldwide, and its production, consumption, and sale are strictly regulated by laws. Alcohol content of alcoholic beverages (wine, beers, and spirits) is about 3–50% v/v. Analytical methods to determine the alcohol content must be reliable, precise, and accurate. In this study, the amount of ethanol in several alcoholic beverages was determined using a 45 MHz low-field benchtop NMR (nuclear magnetic resonance) spectrometer. Internal standard and standard addition analytical methods were utilized to quantify ethanol. For both methods, acetic acid or acetonitrile was used as internal standard to quantify alcohol content by using the peak area corresponding to the methyl peaks of ethanol, acetic acid, or acetonitrile. Results showed that internal standard method gave values of percent alcohol that are in close agreement with the indicated label as confirmed by running the samples in a 400 MHz high-field NMR spectrometer using acetic acid as internal standard. This study demonstrates the utility of a benchtop NMR spectrometer that can provide an alternative technique to analyze percent alcohol in alcoholic products.


Sign in / Sign up

Export Citation Format

Share Document