Cleaning magnetometer data using multi sensor configuration

Author(s):  
Dragos Constantinescu ◽  
Hans-Ulrich Auster ◽  
Magda Delva ◽  
Olaf Hillenmaier ◽  
Werner Magnes ◽  
...  

<p>Measuring the in situ magnetic field using space borne instruments requires either a magnetically clean platform and/or a very long boom for accommodating magnetometers sensors at a large distance from the spacecraft body. This significantly drives up the costs and time for building the spacecraft. Here we present an alternative sensor configuration and an algorithm allowing for ulterior removing of the spacecraft generated disturbances from the magnetic field measurements, thus lessening the need for a magnetic cleanliness program.</p><p>The Service Oriented Spacecraft Magnetometer (SOSMAG) onboard the Korean Geostationary Satellite GEO-KOMPSAT-2A (GK-2A) uses for the first time a multi-sensor configuration for onboard data cleaning. To remove the AC disturbances, a combination of the measurements from sensors placed at different positions from the disturbance sources is processed onboard. Sensor biases due to daily temperature variations are also removed using the specific SOSMAG sensor arrangement. </p><p> </p>

2020 ◽  
Author(s):  
Ovidiu Dragoş Constantinescu ◽  
Hans-Ulrich Auster ◽  
Magda Delva ◽  
Olaf Hillenmaier ◽  
Werner Magnes ◽  
...  

Abstract. In situ measurement of the magnetic field using space borne instruments requires either a magnetically clean platform and/or a very long boom for accommodating magnetometer sensors at a large distance from the spacecraft body. This significantly drives up the costs and time required to build a spacecraft. Here we present an alternative sensor configuration and an algorithm allowing for ulterior removal of the spacecraft generated disturbances from the magnetic field measurements, thus lessening the need for a magnetic cleanliness program and allowing for shorter boom length. The proposed algorithm is applied to the Service Oriented Spacecraft Magnetometer (SOSMAG) onboard the Korean geostationary satellite GeoKompsat-2A (GK2A) which uses for the first time a multi-sensor configuration for onboard data cleaning. The successful elimination of disturbances originating from several sources validates the proposed cleaning technique.


2020 ◽  
Vol 9 (2) ◽  
pp. 451-469
Author(s):  
Ovidiu Dragoş Constantinescu ◽  
Hans-Ulrich Auster ◽  
Magda Delva ◽  
Olaf Hillenmaier ◽  
Werner Magnes ◽  
...  

Abstract. In situ measurement of the magnetic field using spaceborne instruments requires a magnetically clean platform and/or a very long boom for accommodating magnetometer sensors at a large distance from the spacecraft body. This significantly drives up the costs and the time required to build a spacecraft. Here we present an alternative sensor configuration and a technique allowing for removal of the spacecraft-generated AC disturbances from the magnetic field measurements, thus lessening the need for a magnetic cleanliness programme and allowing for shorter boom length. The final expression of the corrected data takes the form of a linear combination of the measurements from all sensors, allowing for simple onboard software implementation. The proposed technique is applied to the Service Oriented Spacecraft Magnetometer (SOSMAG) on board the Korean geostationary satellite GeoKompsat-2A (GK2A). In contrast to other missions where multi-sensor measurements were used to clean the data on the ground, the SOSMAG instrument performs the cleaning on board and transmits the corrected data in real time, as needed by space weather applications. The successful elimination of the AC disturbances originating from several sources validates the proposed cleaning technique.


2011 ◽  
Vol 29 (4) ◽  
pp. 639-647 ◽  
Author(s):  
S. A. Pope ◽  
T. L. Zhang ◽  
M. A. Balikhin ◽  
M. Delva ◽  
L. Hvizdos ◽  
...  

Abstract. In situ measurements of the magnetic field are vital to the study of many fundamental problems in planetary research. Therefore the magnetometer experiment is a key element of the payload of Venus Express. In addition to the interaction of the solar wind with Venus, these measurements are crucial for the study of atmospheric escape and detection of lightning. However, the methodology for the magnetic field measurements had to be different to the traditional approach, because Venus Express is not a magnetically clean spacecraft. A technique based on two-point simultaneous measurements of the magnetic field and systems identification software is used to separate the natural magnetic field from the spacecraft generated interference. In this paper an overview of the techniques developed to separate these two field types and the results achieved for 1 Hz Venus Express data are presented. Previous publications suggest that the resulting Venus Express cleaned data is of comparable quality to measurements made from onboard magnetically clean spacecraft (Zhang et al., 2008a, b; Slavin et al., 2009).


2010 ◽  
Vol 28 (9) ◽  
pp. 1687-1693 ◽  
Author(s):  
Y. C. Zhang ◽  
C. Shen ◽  
Z. X. Liu ◽  
Y. Narita

Abstract. The magnetic field in many regions of magnetosphere has a complex topological structure. As a parameter to measure the topological complexity, the concept of magnetic helicity is a useful tool in magnetospheric physics. Here we present a case study of magnetic helicity in the flux rope (FR) in the near-Earth plasma sheet (PS) based on the in-situ observation from THEMIS for the first time. With the help of the Grad-Shafranov reconstruction technique, we determine the spatial distribution of magnetic field and evaluate the magnetic helicity in the flux rope. The conservation of magnetic helicity during multiple X-line reconnections and the transport of magnetic helicity between different magnetic field configurations are also discussed. The further application of helicity in magnetosphere will provide us more knowledge about the topologic property of the magnetic fields there and more attention should be paid to that.


2012 ◽  
Vol 1 (2) ◽  
pp. 103-109 ◽  
Author(s):  
M. A. Pudney ◽  
C. M. Carr ◽  
S. J. Schwartz ◽  
S. I. Howarth

Abstract. In-situ magnetic field measurements are of critical importance in understanding how the Sun creates and controls the heliosphere. To ensure the measurements are accurate, it is necessary to track the combined slowly varying spacecraft magnetic field and magnetometer zero offset – the systematic error in the sensor measurements. For a 3-axis stabilised spacecraft, in-flight correction of zero offsets primarily relies on the use of Alfvénic rotations in the magnetic field. We present a method to automatically determine a key parameter related to the ambient compressional variance of the signal (which determines the selection criteria for identifying clear Alfvénic rotations). We apply our method to different solar wind conditions, performing a statistical analysis of the data periods required to achieve a 70% chance of calculating an offset using Helios datasets. We find that 70% of 40 min data periods in regions of fast solar wind possess sufficient rotational content to calculate an offset. To achieve the same 70% calculation probability in regions of slow solar wind requires data periods of 2 h duration. We also find that 40 min data periods at perihelion compared to 1 h and 40 min data periods at aphelion are required to achieve the same 70% calculation probability. We compare our method with previous work that uses a fixed parameter approach and demonstrate an improvement in the calculation probability of up to 10% at aphelion and 5% at perihelion.


Author(s):  
M. A. Pudney ◽  
C. M. Carr ◽  
S. J. Schwartz ◽  
S. I. Howarth

Abstract. In-situ magnetic field measurements are of critical importance in understanding how the Sun creates and controls the heliosphere. To ensure the measurements are accurate, it is necessary to track the combined slowly-varying spacecraft magnetic field and magnetometer zero offset – the systematic error in the sensor measurements. For a 3-axis stabilised spacecraft, in-flight correction of zero offsets primarily relies on the use of Alfvénic rotations in the magnetic field. We present a method to automatically determine a key parameter related to the ambient compressional variance of the signal (which determines the selection criteria for identifying clear Alfvénic rotations). We apply our method to different solar wind conditions, performing a statistical analysis of the data periods required to achieve a 70% chance of calculating an offset using Helios datasets. We find that 70% of 40 min data periods in regions of fast solar wind possess sufficient rotational content to calculate an offset. To achieve the same 70% calculation probability in regions of slow solar wind requires data periods of 2 h duration. We also find that 40 min data periods at perihelion compared to 1 h and 40 min data periods at aphelion are required to achieve the same 70% calculation probability. We compare our method with previous work that uses a fixed parameter approach and demonstrate an improvement in the calculation probability of up to 10% at aphelion and 5% at perihelion.


2007 ◽  
Vol 25 (3) ◽  
pp. 785-799 ◽  
Author(s):  
A. Kis ◽  
M. Scholer ◽  
B. Klecker ◽  
H. Kucharek ◽  
E. A. Lucek ◽  
...  

Abstract. Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB) ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.


2020 ◽  
Vol 38 (4) ◽  
pp. 823-832 ◽  
Author(s):  
Daniel Schmid ◽  
Ferdinand Plaschke ◽  
Yasuhito Narita ◽  
Daniel Heyner ◽  
Johannes Z. D. Mieth ◽  
...  

Abstract. Recently the two-spacecraft mission BepiColombo launched to explore the plasma and magnetic field environment of Mercury. Both spacecraft, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO, also referred to as Mio), are equipped with fluxgate magnetometers, which have proven to be well-suited to measure the magnetic field in space with high precision. Nevertheless, accurate magnetic field measurements require proper in-flight calibration. In particular the magnetometer offset, which relates relative fluxgate readings into an absolute value, needs to be determined with high accuracy. Usually, the offsets are evaluated from observations of Alfvénic fluctuations in the pristine solar wind, if those are available. An alternative offset determination method, which is based on the observation of highly compressional fluctuations instead of incompressible Alfvénic fluctuations, is the so-called mirror mode technique. To evaluate the method performance in the Hermean environment, we analyze four years of MESSENGER (MErcury Surface, Space ENvironment, GEophysics and Ranging) magnetometer data, which are calibrated by the Alfvénic fluctuation method, and compare it with the accuracy and error of the offsets determined by the mirror mode method in different plasma environments around Mercury. We show that the mirror mode method yields the same offset estimates and thereby confirms its applicability. Furthermore, we evaluate the spacecraft observation time within different regions necessary to obtain reliable offset estimates. Although the lowest percentage of strong compressional fluctuations are observed in the solar wind, this region is most suitable for an accurate offset determination with the mirror mode method. 132 h of solar wind data are sufficient to determine the offset to within 0.5 nT, while thousands of hours are necessary to reach this accuracy in the magnetosheath or within the magnetosphere. We conclude that in the solar wind the mirror mode method might be a good complementary approach to the Alfvénic fluctuation method to determine the (spin-axis) offset of the Mio magnetometer.


2014 ◽  
Vol 9 (S307) ◽  
pp. 389-390
Author(s):  
Coralie Neiner ◽  

AbstractUVMag is a medium-size space telescope equipped with a high-resolution spectropolarimetrer working in the UV and visible domains. It will be proposed to ESA for a future M mission. It will allow scientists to study all types of stars as well as e.g. exoplanets and the interstellar medium. It will be particularly useful for massive stars, since their spectral energy distribution peaks in the UV. UVMag will allow us to study massive stars and their circumstellar environment (in particular the stellar wind) spectroscopically in great details. Moreover, with UVMag's polarimetric capabilities we will be able, for the first time, to measure the magnetic field of massive stars simultaneously at the stellar surface and in the wind lines, i.e. to completely map their magnetosphere.


2021 ◽  
Author(s):  
Sofia Kroisz ◽  
Lukas Drescher ◽  
Manuela Temmer ◽  
Sandro Krauss ◽  
Barbara Süsser-Rechberger ◽  
...  

<p>Through advanced statistical investigation and evaluation of solar wind plasma and magnetic field data, we investigate the statistical relation between the magnetic field B<sub>z</sub> component, measured at L1, and Earth’s thermospheric neutral density. We will present preliminary results of the time series analyzes using in-situ plasma and magnetic field measurements from different spacecraft in near Earth space (e.g., ACE, Wind, DSCOVR) and relate those to derived thermospheric densities from various satellites (e.g., GRACE, CHAMP). The long and short term variations and dependencies in the solar wind data are related to variations in the neutral density of the thermosphere and geomagnetic indices. Special focus is put on the specific signatures that stem from coronal mass ejections and stream or corotating interaction regions.  The results are used to develop a novel short-term forecasting model called SODA (Satellite Orbit DecAy). This is a joint study between TU Graz and University of Graz funded by the FFG Austria (project “SWEETS”).</p>


Sign in / Sign up

Export Citation Format

Share Document