Further development on sea-ice HBI biomarker proxies.

Author(s):  
Maria Luisa Sánchez-Montes ◽  
Nikolai Pedentchouk ◽  
Thomas Mock ◽  
Simon Belt ◽  
Lukas Smik

<p>Sea ice is a crucial component of the Earth’s climate system, which helps regulate global ocean and atmosphere’s temperature. The alarming decline in sea-ice extent and thickness under modern climate conditions has created the urgency to understand the long-term sea-ice variability and mechanisms of change. In recent years, the highly branched isoprenoid (HBI) lipid biomarker IP<sub>25</sub> has emerged as a powerful proxy measure of past sea ice in the Arctic, and its analysis in a variety of marine sediments has provided the foundation for a large number of palaeo sea ice reconstructions spanning thousands to millions of years before present. To date, IP<sub>25</sub> and related HBI-based studies have focussed largely on reconstructions of sea-ice extent and seasonal dynamics. Here we aim to further develop such sea ice proxies by measuring the changes in distribution and isotopic composition of HBIs in HBI-producing diatoms grown under different controlled laboratory conditions. We present preliminary results from the diatom <em>Haslea ostrearia</em> and outline the next steps of our research in the coming year.</p>

2021 ◽  
Author(s):  
David J. Harning ◽  
Brooke Holman ◽  
Lineke Woelders ◽  
Anne E. Jennings ◽  
Julio Sepúlveda

Abstract. The North Water Polynya (NOW, Greenlandic Inuit: Pikialasorsuaq), Baffin Bay, is the largest polynya and one of the most productive regions in the Arctic. This area of thin to absent sea ice is a critical moisture source for local ice sheet sustenance and coupled with the inflow of nutrient-rich Arctic Surface Water, supports a diverse community of Arctic fauna and indigenous people. Although paleoceanographic records can provide critical insight into the NOW’s past behavior, it is critical that we fully understand the modern functionality of the paleoceanographic proxies beforehand. In this study, we analyzed lipid biomarkers, including algal highly-branched isoprenoids and sterols for sea ice extent and pelagic productivity, and algal alkenones and archaeal GDGTs for ocean temperature, in a suite of modern surface sediment samples from within and around the NOW. Our data show that all highly-branched isoprenoids exhibit strong correlations with each other and show highest concentrations within the NOW, which suggests a spring/autumn sea ice diatom source rather than a combination of sea ice and open water diatoms as seen elsewhere in the Arctic. Sterols are also highly concentrated in the NOW and exhibit an order of magnitude higher concentration here compared to sites south of the NOW, consistent with the order of magnitude higher primary productivity observed within the NOW relative to surrounding waters in spring/summer months. Finally, our temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations, but also identify some additional variables that may be important in controlling their local distribution, such as salinity, nutrients, and dissolved oxygen. Collectively, our datasets provide new insight into the utility of these lipid biomarker proxies in high-latitude settings and will help provide a refined perspective on the Holocene development of the NOW with their application in downcore reconstructions.


2017 ◽  
Vol 11 (1) ◽  
pp. 65-79 ◽  
Author(s):  
Lars H. Smedsrud ◽  
Mari H. Halvorsen ◽  
Julienne C. Stroeve ◽  
Rong Zhang ◽  
Kjell Kloster

Abstract. A new long-term data record of Fram Strait sea ice area export from 1935 to 2014 is developed using a combination of satellite radar images and station observations of surface pressure across Fram Strait. This data record shows that the long-term annual mean export is about 880 000 km2, representing 10 % of the sea-ice-covered area inside the basin. The time series has large interannual and multi-decadal variability but no long-term trend. However, during the last decades, the amount of ice exported has increased, with several years having annual ice exports that exceeded 1 million km2. This increase is a result of faster southward ice drift speeds due to stronger southward geostrophic winds, largely explained by increasing surface pressure over Greenland. Evaluating the trend onwards from 1979 reveals an increase in annual ice export of about +6 % per decade, with spring and summer showing larger changes in ice export (+11 % per decade) compared to autumn and winter (+2.6 % per decade). Increased ice export during winter will generally result in new ice growth and contributes to thinning inside the Arctic Basin. Increased ice export during summer or spring will, in contrast, contribute directly to open water further north and a reduced summer sea ice extent through the ice–albedo feedback. Relatively low spring and summer export from 1950 to 1970 is thus consistent with a higher mid-September sea ice extent for these years. Our results are not sensitive to long-term change in Fram Strait sea ice concentration. We find a general moderate influence between export anomalies and the following September sea ice extent, explaining 18 % of the variance between 1935 and 2014, but with higher values since 2004.


2017 ◽  
Vol 11 (5) ◽  
pp. 2111-2116 ◽  
Author(s):  
Christian Katlein ◽  
Stefan Hendricks ◽  
Jeffrey Key

Abstract. On the basis of a new, consistent, long-term observational satellite dataset we show that, despite the observed increase of sea ice extent in the Antarctic, absorption of solar shortwave radiation in the Southern Ocean poleward of 60° latitude is not decreasing. The observations hence show that the small increase in Antarctic sea ice extent does not compensate for the combined effect of retreating Arctic sea ice and changes in cloud cover, which both result in a total increase in solar shortwave energy deposited into the polar oceans.


2016 ◽  
Author(s):  
Lars H. Smedsrud ◽  
Mari H. Halvorsen ◽  
Julienne C. Stroeve ◽  
Rong Zhang ◽  
Kjell Kloster

Abstract. The Arctic Basin exports between 600,000 and 1 million km2 of it's sea ice cover southwards through Fram Strait each year, or about 10 % of the sea-ice covered area inside the basin. During winter, ice export results in growth of new and relatively thin ice inside the basin, while during summer or spring, export contributes directly to open water further north that enhances the ice-albedo feedback during summer. A new updated time series from 1935 to 2014 of Fram Strait sea ice area export shows that the long-term annual mean export is about 880,000 km2, with large inter-annual and multidecadal variability, and no long-term trend over the past 80 years. Nevertheless, the last decade has witnessed increased ice export, with several years having annual ice export that exceed 1 million km2. Evaluating the trend onwards from 1979, when satellite based sea ice coverage became more readily available, reveals an increase in annual export of about +6 % per decade. The observed increase is caused by higher southward ice drift speeds due to stronger southward geostrophic winds, largely explained by increasing surface pressure over Greenland. Spring and summer area export increased more (+11 % per decade) than in autumn and winter (+2.6 % per decade). Contrary to the last decade, the 1950–1970 period had relatively low export during spring and summer, and consistently mid-September sea ice extent was higher during these decades than both before and afterwards. We thus find that export anomalies during spring have a clear influence on the following September sea ice extent in general, and that for the recent decade, the export may be partially responsible for the accelerating decline in Arctic sea ice extent.


2011 ◽  
Vol 52 (58) ◽  
pp. 237-247 ◽  
Author(s):  
Hiroki Shibata ◽  
Kazutaka Tateyama ◽  
Hiroyuki Enomoto ◽  
Shuuhei Takahashi

AbstarctWith decreases in Arctic sea-ice extent in recent years, the Northern Sea Route (NSR) and Northwest Passage (NWP), which we collectively term the Arctic Sea Route (ASR), have become open for navigation more frequently. The ASR connects the Pacific and Atlantic Oceans, with the NSR following the Siberian coast, and the NWP following the north coast of North America. This study evaluated long-term ice concentrations along both routes using microwave data from the SMMR and SSM/I sensors, and analyzed details using data from the AMSR-E passive microwave sensor. The data were used to determine the number of navigable days according to various sea-ice concentrations. Analysis of SMMR and SSM/I data showed a remarkably large number of navigable days on the NSR since 1995. For the NWP, the low resolution of the SMMR and SSM/I data for the Canadian Arctic Archipelago made analysis difficult, but long-term change in the sea-ice distribution on the ASR was indicated. Analysis of the AMSR-E microwave sensor data revealed navigable days along the NSR in 2002 and from 2005 to 2009 (except 2007). For navigation purposes, the sea-ice decrease in specific regions is important, as well as the decrease across the Arctic Ocean as a whole. For the NWP, numerous navigable days were identified in the period 2006–08.


2020 ◽  
Author(s):  
Sandro Dahlke ◽  
Nicholas Hughes ◽  
Penelope Wagner ◽  
Sebastian Gerland ◽  
Tomasz Wawrzyniak ◽  
...  

<p>The Svalbard archipelago in the Arctic North Atlantic is experiencing rapid changes in the surface climate and sea ice distribution, with impacts for the coupled climate system and the local society. Using observational data of surface air temperature (SAT) from 1980–2016 across the whole Svalbard archipelago, and sea ice extent (SIE) from operational sea ice charts,  a systematic assessment of climatologies, long-term changes and regional differences is conducted. The proximity to the warm water mass of the West Spitsbergen Current (WSC) drives a markedly warmer climate in the western coastal regions compared to northern and eastern Svalbard. This imprints on the SIE climatology in southern and western Svalbard, where the annual maxima of 50–60% area ice coverage are substantially less than 80–90% in the northern and eastern fjords. Owing to winter-amplified warming, the local climate is shifting towards more maritime conditions, and SIE reductions of between 5% to 20% per decade in particular regions are found, such that a number of fjords in the west have been virtually ice-free in recent winters. The strongest decline comes along with SAT forcing and occurs over the most recent 1–2 decades in all regions. In the 1980s and 1990s, enhanced northerly winds and sea ice drift can explain 30–50% of SIE variability around northern Svalbard, where they had correspondingly lead to a SIE increase. At the same time, interannual temperature fluctuations within the WSC waters can explain 20-37% of SIE variability in a number of fjords on the west coast. With an ongoing warming it is suggested that both the meteorological and cryospheric conditions in eastern Svalbard will become increasingly similar to what is already observed in the western fjords, namely suppressed typical Arctic climate conditions.</p>


2011 ◽  
Vol 24 (6) ◽  
pp. 1705-1717 ◽  
Author(s):  
Camille Lique ◽  
Gilles Garric ◽  
Anne-Marie Treguier ◽  
Bernard Barnier ◽  
Nicolas Ferry ◽  
...  

Abstract The authors investigate the variability of salinity in the Arctic Ocean and in the Nordic and Labrador Seas over recent years to see how the freshwater balance in the Arctic and the exchanges with the North Atlantic have been affected by the recent important sea ice melting, especially during the 2007 sea ice extent minimum. The Global Ocean Reanalysis and Simulations (GLORYS1) global ocean reanalysis based on a global coupled ocean–sea ice model with an average of 12-km grid resolution in the Arctic Ocean is used in this regard. Although no sea ice data and no data under sea ice are assimilated, simulation over the 2001–09 period is shown to represent fairly well the 2007 sea ice event and the different components accounting for the ocean and sea ice freshwater budget, compared to available observations. In the reanalysis, the 2007 sea ice minimum is due to an increase of the sea ice export through Fram Strait (25%) and an important sea ice melt in the Arctic (75%). Liquid freshwater is accumulated in the Beaufort gyre after 2002, in agreement with recent observations, and it is shown that this accumulation is due to both the sea ice melt and a spatial redistribution of the freshwater content in the Canadian Basin. In the Eurasian Basin, a very contrasting situation is found with an increase of the salinity. The effect of the sea ice melt is counterbalanced by an increase of the Atlantic inflow and a modification of the circulation north of Fram Strait after 2007. The authors suggest that a strong anomaly of the atmospheric conditions was responsible for this change of the circulation.


2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2021 ◽  
Author(s):  
Angelina Cassianides ◽  
Camillie Lique ◽  
Anton Korosov

<p>In the global ocean, mesoscale eddies are routinely observed from satellite observation. In the Arctic Ocean, however, their observation is impeded by the presence of sea ice, although there is a growing recognition that eddy may be important for the evolution of the sea ice cover. In this talk, we will present a new method of surface ocean eddy detection based on their signature in sea ice vorticity retrieved from Synthetic Aperture Radar (SAR) images. A combination of Feature Tracking and Pattern Matching algorithm is used to compute the sea ice drift from pairs of SAR images. We will mostly focus on the case of one eddy in October 2017 in the marginal ice zone of the Canadian Basin, which was sampled by mooring observations, allowing a detailed description of its characteristics. Although the eddy could not be identified by visual inspection of the SAR images, its signature is revealed as a dipole anomaly in sea ice vorticity, which suggests that the eddy is a dipole composed of a cyclone and an anticyclone, with a horizontal scale of 80-100 km and persisted over a week. We will also discuss the relative contributions of the wind and the surface current to the sea ice vorticity. We anticipate that the robustness of our method will allow us to detect more eddies as more SAR observations become available in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document