Last Interglacial Sea-Level Indicators in the Western Indian Ocean

Author(s):  
Patrick Boyden ◽  
Jennifer Weil Accardo ◽  
Pierre Deschamps ◽  
Alessio Rovere

<p>With global average temperatures 2°C higher than pre-industrial and eustatic sea-level ranging between 5 and 9 m above present, the Last Interglacial is often regarded as a good process-analogue for a future warmer climate.  Large uncertainties are associated with Last Interglacial eustatic sea-level estimations. To quantify these uncertainties through standardization of sea-level metadata, the World Atlas of Last Interglacial Shorelines (WALIS) provides a community-wide standard for documenting the geological context of sea-level indicators and their chronology. By applying this standard, WALIS allows for the quantitative cross-comparison between previous studies, often times separated by decades.</p><p> </p><p>We use WALIS to review published sea-level indicators for the Last Interglacial within the Western Indian Ocean basin. Located in the far field with respect to past glaciations, the Western Indian Ocean has the potential to provide precisely measured and dated sea level proxies, enabling a reliable estimation of maximum eustatic sea level for the Last Interglacial. This, in turn, would allow to better constrain upper boundaries of melting within ice-sheet models. Furthermore, this review highlights localities that should be revisited based on the presence of geological facies indicative of former highstands where not enough detail has been reported or where advanced dating and geodetic techniques can increase the accuracy of metadata.</p>

2021 ◽  
Vol 13 (4) ◽  
pp. 1633-1651
Author(s):  
Patrick Boyden ◽  
Jennifer Weil-Accardo ◽  
Pierre Deschamps ◽  
Davide Oppo ◽  
Alessio Rovere

Abstract. In this paper, we describe a sea-level database compiled using published last interglacial, Marine Isotopic Stage 5 (MIS 5), geological sea-level proxies within East Africa and the Western Indian Ocean (EAWIO). Encompassing vast tropical coastlines and coralline islands, this region has many occurrences of well-preserved last interglacial stratigraphies. Most notably, islands almost entirely composed of Pleistocene reefs (such as Aldabra, the Seychelles) have provided reliable paleo relative sea-level indicators and well-preserved samples for U-series chronology. Other sea-level proxies include uplifted marine terraces in the north of Somalia and Pleistocene eolian deposits notched by the MIS 5 sea level in Mozambique to tidal notches in luminescence-limited eolian deposits in Mozambique. Our database has been compiled using the World Atlas of Last Interglacial Shorelines (WALIS) interface and contains 58 sea-level indicators and 2 terrestrial-limiting data points. The open-access database is available at https://doi.org/10.5281/zenodo.4302244 (Version 1.03; Boyden et al., 2020).


2020 ◽  
Author(s):  
Patrick Boyden ◽  
Jennifer Weil-Accardo ◽  
Pierre Deschamps ◽  
Davide Oppo ◽  
Alessio Rovere

Abstract. In this paper, we describe a sea-level database compiled using published Last Interglacial, Marine Isotopic Stage 5 (MIS 5), geological sea-level proxies within Eastern Africa and the Western Indian Ocean (EAWIO). Encompassing vast tropical coastlines and coralline islands, this region has many occurrences of well preserved last interglacial stratigraphies. Most notably, islands almost entirely composed by Pleistocene reefs (such as Aldabra, the Seychelles) have provided reliable paleo relative sea-level indicators and well-preserved samples for U-series chronology. Other sea-level proxies include uplifted marine terraces in the north of Somalia and tidal notches in luminescence limited aeolian deposits in Mozambique. Our database has been compiled using the World Atlas of Last Interglacial Shorelines (WALIS) interface and contains 57 sea-level indicators and 2 terrestrial limiting data points. The database is available open access at https://doi.org/10.5281/zenodo.4043366 (Version 1.02) (Boyden et al., 2020).


2020 ◽  
Vol 33 (2) ◽  
pp. 749-765 ◽  
Author(s):  
Rondrotiana Barimalala ◽  
Ross C. Blamey ◽  
Fabien Desbiolles ◽  
Chris J. C. Reason

AbstractThe Mozambique Channel trough (MCT) is a cyclonic region prominent in austral summer in the central and southern Mozambique Channel. It first becomes evident in December with a peak in strength in February when the Mozambique Channel is warmest and the Mascarene high (MH) is located farthest southeast in the Indian Ocean basin. The strength and the timing of the mean MCT are linked to that of the cross-equatorial northeasterly monsoon in the tropical western Indian Ocean, which curves as northwesterlies toward northern Madagascar. The interannual variability in the MCT is associated with moist convection over the Mozambique Channel and is modulated by the location of the warm sea surface temperatures in the south Indian Ocean. Variability of the MCT shows a strong relationship with the equatorial westerlies north of Madagascar and the latitudinal extension of the MH. Summers with strong MCT activity are characterized by a prominent cyclonic circulation over the Mozambique Channel, extending to the midlatitudes. These are favorable for the development of tropical–extratropical cloud bands over the southwestern Indian Ocean and trigger an increase in rainfall over the ocean but a decrease over the southern African mainland. Most years with a weak MCT are associated with strong positive south Indian Ocean subtropical dipole events, during which the subcontinent tends to receive more rainfall whereas Madagascar and northern Mozambique are anomalously dry.


2021 ◽  
Author(s):  
Alessio Rovere ◽  
Deirdre Ryan ◽  
Matteo Vacchi ◽  
Alexander Simms ◽  
Andrea Dutton ◽  
...  

<p>The standardization of geological data, and their compilation into geodatabases, is essential to allow more coherent regional and global analyses. In sea-level studies, the compilation of databases containing details on geological paleo sea-level proxies has been the subject of decades of work. This was largely spearheaded by the community working on Holocene timescales. While several attempts were also made to compile data from older interglacials, a truly comprehensive approach was missing. Here, we present the ongoing efforts directed to create the World Atlas of Last Interglacial Shorelines (WALIS), a project spearheaded by the PALSEA (PAGES/INQUA) community and funded by the European Research Council (ERC StG 802414). The project aims at building a sea-level database centered on the Last Interglacial (Marine Isotope Stage 5e, 125 ka), a period of time considered as an "imperfect analog" for a future warmer climate. The database is composed of 17 tables embedded into a mySQL framework with a total of more than 500 single fields to describe several properties related to paleo sea-level proxies, dated samples and metadata. In this presentation, we will show the first results of the global compilation, which includes nearly 2000 data points and will discuss its relevance in answering some of the most pressing questions related to sea-level changes in past warmer worlds. </p>


2016 ◽  
Vol 12 (12) ◽  
pp. 2195-2213 ◽  
Author(s):  
Heiko Goelzer ◽  
Philippe Huybrechts ◽  
Marie-France Loutre ◽  
Thierry Fichefet

Abstract. As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG,  ∼  130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate–ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet–climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.


2013 ◽  
Vol 9 (1) ◽  
pp. 353-366 ◽  
Author(s):  
A. Quiquet ◽  
C. Ritz ◽  
H. J. Punge ◽  
D. Salas y Mélia

Abstract. As pointed out by the forth assessment report of the Intergovernmental Panel on Climate Change, IPCC-AR4 (Meehl et al., 2007), the contribution of the two major ice sheets, Antarctica and Greenland, to global sea level rise, is a subject of key importance for the scientific community. By the end of the next century, a 3–5 °C warming is expected in Greenland. Similar temperatures in this region were reached during the last interglacial (LIG) period, 130–115 ka BP, due to a change in orbital configuration rather than to an anthropogenic forcing. Ice core evidence suggests that the Greenland ice sheet (GIS) survived this warm period, but great uncertainties remain about the total Greenland ice reduction during the LIG. Here we perform long-term simulations of the GIS using an improved ice sheet model. Both the methodologies chosen to reconstruct palaeoclimate and to calibrate the model are strongly based on proxy data. We suggest a relatively low contribution to LIG sea level rise from Greenland melting, ranging from 0.7 to 1.5 m of sea level equivalent, contrasting with previous studies. Our results suggest an important contribution of the Antarctic ice sheet to the LIG highstand.


2021 ◽  
Author(s):  
Linda Pan ◽  
Evelyn M. Powell ◽  
Konstantin Latychev ◽  
Jerry X. Mitrovica ◽  
Jessica R. Creveling ◽  
...  

<p>Studies of peak global mean sea level (GMSL) during the Last Interglacial (LIG; 130-116 ka) commonly cite values ranging from ~2-5 m for the maximum contribution from grounded, marine-based sectors of the West Antarctic Ice Sheet (WAIS). However, this estimate neglects viscoelastic crustal uplift and the associated meltwater flux out of marine sectors as they are exposed, a contribution considered to be small and slowly-accumulating. This assumption should be revisited, as a range of evidence indicates that West Antarctica is underlain by shallow mantle of anomalously low viscosity. By incorporating this complex structure into a gravitationally self-consistent sea-level calculation, we find that GMSL differs substantially from previous estimates. Our results indicate that these estimates thus require a reassessment of the contribution to GMSL rise from WAIS collapse, as will ice sheet models that do not account for the uplift mechanism. This conclusion has important implications for the sea level budget not only during the LIG, but also for all previous interglacials and projections of GMSL change in the future warming world.  </p>


Sign in / Sign up

Export Citation Format

Share Document