Upscaling of geophysical measurements: A methodology for the estimation of the total ground ice content at two study sites in the dry Andes of Chile and Argentina

Author(s):  
Tamara Mathys ◽  
Christin Hilbich ◽  
Cassandra E.M. Koenig ◽  
Lukas Arenson ◽  
Christian Hauck

<p>With climate change and the associated continuing recession of glaciers, water security, especially in regions depending on the water supply from glaciers, is threatened. In this context, the understanding of permafrost distribution and its degradation is of increasing importance as it is currently debated whether ground ice can be considered as a significant water reservoir and as an alternative resource of fresh water that could potentially moderate water scarcity during dry seasons in the future. Thus, there is a pressing need to better understand how much water is stored as ground ice in areas with extensive permafrost occurrence and how meltwater from permafrost degradation may contribute to the hydrological cycle in the region.</p><p>Although permafrost and permafrost landforms in the Central Andes are considered to be abundant and well developed, the data is scarce and understanding of the Andean cryosphere lacking, especially in areas devoid of glaciers and rock glaciers.</p><p>In the absence of boreholes and test pits, geophysical investigations are a feasible and cost-effective technique to detect ground ice occurrences within a variety of landforms and substrates. In addition to the geophysical surveys themselves, upscaling techniques are needed to estimate ground ice content, and thereby future water resources, on larger spatial scales. To contribute to reducing the data scarcity regarding ground ice content in the Central Andes, this study focuses on the permafrost distribution and the ground ice content (and its water equivalent) of two catchments in the semi-arid Andes of Chile and Argentina. Geophysical methods (Electrical Resistivity Tomography, ERT and Refraction Seismic Tomography, RST) were used to detect and quantify ground ice in the study regions in the framework of environmental impact assessments in mining areas. Where available, ERT and RST measurements were quantitatively combined to estimate the volumetric ground ice content using the Four Phase Model (Hauck et al., 2011). Furthermore, we developed one of the first methodologies for the upscaling of these geophysical-based ground ice quantifications to an entire catchment in order to estimate the total ground ice volume in the study areas.</p><p>In this contribution we will present the geophysical data, the upscaling methodology used to estimate total ground ice content (and water equivalent) of permafrost areas, and some first estimates of total ground ice content in rock glacier and rock glacier free areas and compare them to conventional estimates using remotely sensed data.</p><p> </p><p>Hauck, C., Böttcher, M., and Maurer, H. (2011). A new model for estimating subsurface ice content based on combined electrical and seismic datasets, The Cryosphere, 5: 453-468.</p>

2021 ◽  
Author(s):  
Tamara Mathys ◽  
Christin Hilbich ◽  
Lukas U. Arenson ◽  
Pablo A. Wainstein ◽  
Christian Hauck

Abstract. With ongoing climate change, there is a pressing need to better understand how much water is stored as ground ice in areas with extensive permafrost occurrence and how the regional water balance may alter in response to the potential generation of melt water from permafrost degradation. However, field-based data on permafrost in remote and mountainous areas such as the South-American Andes is scarce and most current ground ice estimates are based on broadly generalised assumptions such as volume-area scaling and mean ground ice content estimates of rock glaciers. In addition, ground ice contents in permafrost areas outside of rock glaciers are usually not considered, resulting in a significant uncertainty regarding the volume of ground ice in the Andes, and its hydrological role. In part I of this contribution, Hilbich et al. (submitted) present an extensive geophysical data set based on Electrical Resistivity Tomography (ERT) and Refraction Seismic Tomography (RST) surveys to detect and quantify ground ice of different landforms and surface types in several study regions in the semi-arid Andes of Chile and Argentina with the aim to contribute to the reduction of this data scarcity. In part II we focus on the development of a methodology for the upscaling of geophysical-based ground ice quantification to an entire catchment to estimate the total ground ice volume (and its estimated water equivalent) in the study areas. In addition to the geophysical data, the upscaling approach is based on a permafrost distribution model and classifications of surface and landform types. Where available, ERT and RST measurements were quantitatively combined to estimate the volumetric ground ice content using petrophysical relationships within the Four Phase Model (Hauck et al., 2011). In addition to introducing our upscaling methodology, we demonstrate that the estimation of large-scale ground ice volumes can be improved by including (i) non-rock glacier permafrost occurrences, and (ii) field evidence through a large number of geophysical surveys and ground truthing information. The results of our study indicate, that (i) conventional ground ice estimates for rock-glacier dominated catchments without in-situ data may significantly overestimate ground ice contents, and (ii) substantial volumes of ground ice may also be present in catchments where rock glaciers are lacking.


2021 ◽  
Author(s):  
Christin Hilbich ◽  
Christian Hauck ◽  
Coline Mollaret ◽  
Pablo Wainstein ◽  
Lukas U. Arenson

Abstract. In view of the increasing water scarcity in the Central Andes in response to ongoing climate change, the significance of permafrost occurrences for the hydrological cycle is currently being discussed in a controversial way. The lack of comprehensive field measurements and quantitative data on the local variability of internal structure and ground ice content further enhances the situation. We present field-based data from six extensive geophysical campaigns completed since 2016 in three different high-altitude regions of the Central Andes of Chile and Argentina (28 to 32° S). Our data cover various permafrost landforms ranging from ice-poor bedrock to ice-rich rock glaciers and are complemented by ground truthing information from boreholes and numerous test pits near the geophysical profiles. In addition to determining the thickness of the potential ice-rich layers from the individual profiles, we also use the quantitative 4-phase model to estimate the volumetric ground ice content in representative zones of the geophysical profiles. The analysis of 52 geoelectrical and 24 refraction seismic profiles within this study confirmed that ice-rich permafrost is not restricted to rock glaciers, but is also observed in non-rock-glacier permafrost slopes in the form of interstitial ice as well as layers with excess ice, resulting in substantial ice contents. Consequently, non-rock glacier permafrost landforms, whose role for local hydrology has so far not been considered in remote-sensing based approaches, may be similarly relevant in terms of ground ice content on a catchment scale and should not be ignored when quantifying the potential hydrological significance of permafrost. We state that geophysics-based estimates on ground ice content allow for more accurate assessments than purely remote-sensing-based approaches. The geophysical data can then be further used in upscaling studies to the catchment scale in order to reliably estimate the hydrological significance of permafrost within a catchment.


2000 ◽  
Vol 31 ◽  
pp. 300-306 ◽  
Author(s):  
Daniel S. Vonder Mühll ◽  
Christian Hauck ◽  
Frank Lehmann

AbstractAt two permafrost sites in the Swiss Alps a range of geophysical methods were applied to model the structure of the subsurface. At both sites, borehole information was used to verify the quality of the model results. On the Murtèl-Corvatsch rock glacier (2700 m a.s.L; upper Engadine) a 58 m deep core drilling was performed in 1987. D. c resistivity measurements, refraction seismics, ground-penetrating radar (GPR) and gravimetric surveys allowed the shape of the permafrost table beneath the marked surface microtopography to be determined and the lateral extent of a deeper shear horizon to be established The validity of each method was verified by the borehole information (cores, density log and temperature). A coherent model of the rock-glacier structure was developed. At the Schilthorn (2970 m a.s.L; Bernese Oberland), it was not clear whether permafrost is in fact present. Various geophysical surveys (d.c. resistivity tomography, refraction seismics, GPR and EM-31) gave results that were not typical of permafrost environments. A 14 m percussion drilling revealed warm permafrost and a very low ice content. These geotechnical and geothermal data allowed reinterpretation of the geophysical results, improving modelling of ground conditions. The paper demonstrates that in the difficult terrain of Alpine permafrost, boreholes may be critical in calibration and verification of the results of geophysical methods. The most useful combinations of geophysical techniques proved to be (a) seismics with d.c. resistivity, and (b) gravimetry with GPR.


2017 ◽  
Vol 11 (6) ◽  
pp. 2957-2974 ◽  
Author(s):  
Benjamin Mewes ◽  
Christin Hilbich ◽  
Reynald Delaloye ◽  
Christian Hauck

Abstract. Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.


2010 ◽  
Vol 4 (1) ◽  
pp. 77-119 ◽  
Author(s):  
C. Hilbich

Abstract. The ice content of the subsurface is a major factor controlling the natural hazard potential of permafrost degradation in alpine terrain. Monitoring of changes in ground ice content is therefore similarly important as temperature monitoring in mountain permafrost. Although electrical resistivity tomography monitoring (ERTM) has proved to be a valuable tool for the observation of ground ice degradation, results are often ambiguous or contaminated by inversion artefacts. In theory, the P-wave velocity of seismic waves is similarly sensitive to phase changes between unfrozen water and ice. Provided that the general conditions (lithology, stratigraphy, state of weathering, pore space) remain unchanged over the observation period, temporal changes in the observed travel times of repeated seismic measurements should indicate changes in the ice and water content within the pores and fractures of the subsurface material. In this paper, the applicability of refraction seismic tomography monitoring (RSTM) as an independent and complementary method to ERTM is analysed for two test sites in the Swiss Alps. The development and validation of an appropriate RSTM approach involves a) the comparison of time-lapse seismograms and analysis of reproducibility of the seismic signal, b) the analysis of time-lapse travel time curves with respect to shifts in travel times and changes in P-wave velocities, and c) the comparison of inverted tomograms including the quantification of velocity changes. Results show a high potential of the RSTM approach concerning the detection of altered subsurface conditions caused by freezing and thawing processes. For velocity changes on the order of 3000 m/s even an unambiguous identification of significant ground ice loss is possible.


2020 ◽  
Author(s):  
Coline Mollaret ◽  
Florian M. Wagner ◽  
Christin Hilbich ◽  
Christian Hauck

<p>Quantification of ground ice is particularly crucial for understanding permafrost systems. The volumetric ice content is however rarely estimated in permafrost studies, as it is particularly difficult to retrieve. Geophysical methods have become more and more popular for permafrost investigations due to their capacity to distinguish between frozen and unfrozen regions and their complementarity to standard ground temperature data. Geophysical methods offer both a second (or third) spatial dimension and the possibility to gain insights on processes happening near the melting point (ground ice gain or loss at the melting point). Geophysical methods, however, may suffer from potential inversion imperfections and ambiguities (no unique solution). To reduce uncertainties and improve the interpretability, geophysical methods are standardly combined with ground truth data or other independent geophysical methods. We developed an approach of joint inversion to fully exploit the sensitivity of seismic and electrical methods to the phase change of water. We choose apparent resistivities and seismic travel times as input data of a petrophysical joint inversion to directly estimate the volumetric fractions of the pores (liquid water, ice and air) and the rock matrix. This approach was successfully validated with synthetic datasets (Wagner et al., 2019). This joint inversion scheme warrants physically-plausible solutions and provides a porosity estimation in addition to the ground ice estimation of interest. Different petrophysical models are applied to several alpine sites (ice-poor to ice-rich) and their advantages and limitations are discussed. The good correlation of the results with the available ground truth data (thaw depth and ice content data) demonstrates the high potential of the joint inversion approach for the typical landforms of alpine permafrost (Mollaret et al., 2020). The ice content is found to be 5 to 15 % at bedrock sites, 20 to 40 % at talus slopes, and up to 95 % at rock glaciers (in good agreement to the ground truth data from boreholes). Moreover, lateral variations of bedrock depth are correctly identified according to outcrops and borehole data (as the porosity is also an output of the petrophysical joint inversion). A time-lapse version of this petrophysical joint inversion may further reduce the uncertainties and will be beneficial for monitoring and modelling studies upon climate-induced degradation.</p><p> </p><p>References:</p><p>Mollaret, C., Wagner, F. M. Hilbich, C., Scapozza, C., and Hauck, C. Petrophysical joint inversion of electrical resistivity and refraction seismic applied to alpine permafrost to image subsurface ice, water, air, and rock contents. Frontiers in Earth Science, 2020, submitted.</p><p>Wagner, F. M., Mollaret, C., Günther, T., Kemna, A., and Hauck, C. Quantitative imaging of water, ice, and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophysical Journal International, 219 (3):1866–1875, 2019. doi:10.1093/gji/ggz402.</p>


2016 ◽  
Author(s):  
Benjamin Mewes ◽  
Christin Hilbich ◽  
Reynald Delaloye ◽  
Christian Hauck

Abstract. Geophysical methods are often used to characterise and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. Electrical Resistivity Tomography and Refraction Seismic Tomography, depends hereby not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of Electrical Resistivity Tomography and Refraction Seismic Tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested especially the resolution capacity of a petrophysically-based quantitative combination of both methods, the so-called 4-phase model, and by this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding increasing water content compared to decreased ice content, and potentially larger uncertainty for the individual geophysical methods than for the combined evaluation with the 4-phase model. In the latter, ground ice loss can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualised the seasonal ice loss in summer, and the complex spatially variable ice-, water- and air content changes in an interannual comparison.


2021 ◽  
Author(s):  
Christin Hilbich ◽  
Tamara Mathys ◽  
Christian Hauck ◽  
Lukas Arenson

<p>Continued climate change is projected to cause significant temperature increase, yielding substantial water shortage especially in the semi-arid mountain regions of the Central Andes. The role of permafrost occurrences for the hydrological cycle in the Central Andes is currently discussed in a controversial way. On the one hand, permafrost in general, and especially rock glaciers are considered key stores of frozen water in view of the recession of glaciers, and degrading permafrost is expected to partly compensate the decreasing glacial discharge in future. On the other hand, the methodology to quantify ground ice resources in Andean permafrost regions as well as the time scales involved for significant discharge from permafrost bodies are currently disputed.</p><p>Comprehensive and quantitative field-based data on the local variability of internal structure, ground ice content and the hydrological contribution of different permafrost landforms are mostly lacking, and the current debate mostly focuses on rock glaciers as the prominent ice-rich permafrost landforms, as they can easily be identified by remote sensing.</p><p>To ameliorate this lack of ground truth data, we present a quantitative analysis of > 50 Electrical Resistivity Tomography and > 20 Refraction Seismic Tomography profiles from several permafrost sites in different geomorphologic settings, including ice-rich and ice-poor permafrost occurrences. The surveys were conducted between 2016 and 2019 in three different regions of the Central Andes of Chile and Argentina (28 - 32° S) in the framework of several Baseline studies in mining environments. For some sites borehole and test pit data are available and used to validate the quantitative estimates of ground ice contents by the 4-phase model (Hauck et al. 2011).</p><p>We demonstrate the value of geophysical surveys to detect ice-rich permafrost in various landforms (also beyond rock glaciers), and to estimate ground ice volumes in permafrost regions. Our data show, that remote-sensing based approaches tend to significantly overestimate ice volumes of rock glaciers, and on the other hand, that ice-rich permafrost is not restricted to rock glaciers, but also observed in non-rock-glacier permafrost slopes in the form of interstitial ice and layers with excess ice. In regions with widespread occurrence of such permafrost slopes, even relatively thin ice-rich layers can sum up to substantial total ground ice contents, which can be close to the volumes observed in rock glaciers. Consequently, non-rock-glacier permafrost terrain, whose role for local hydrology is basically neglected in remote-sensing based approaches, may be of equal hydrological significance regarding stored ground ice volumes on the catchment scale in some cases, and shall not be ignored.</p><p>The presented data may therefore serve as one of the first available field-based and validated data sets regarding the presence and total quantities of ground ice, and as input for modelling studies about the relative contributions of rock glacier and non-rock glacier permafrost to runoff in the Central Andes.</p><p> </p><p>References</p><p>Hauck C, Böttcher M and Maurer H 2011. A new model for estimating subsurface ice content based on combined electrical and seismic data sets. The Cryosphere 5(2): 453-468.</p>


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Donat Demanet ◽  
François Renardy ◽  
Kris Vanneste ◽  
Denis Jongmans ◽  
Thierry Camelbeeck ◽  
...  

As part of a paleoseismological investigation along the Bree fault scarp (western border of the Roer Graben), various geophysical methods [electrical profiling, electromagnetic (EM) profiling, refraction seismic tests, electrical tomography, ground‐penetrating radar (GPR), and high‐resolution reflection seismic profiles] were used to locate and image an active fault zone in a depth range between a few decimeters to a few tens of meters. These geophysical investigations, in parallel with geomorphological and geological analyses, helped in the decision to locate trench excavations exposing the fault surfaces. The results could then be checked with the observations in four trenches excavated across the scarp. Geophysical methods pointed out anomalies at all sites of the fault position. The contrast of physical properties (electrical resistivity and permittivity, seismic velocity) observed between the two fault blocks is a result of a differences in the lithology of the juxtaposed soil layers and of a change in the water table depth across the fault. Extremely fast techniques like electrical and EM profiling or seismic refraction profiles localized the fault position within an accuracy of a few meters. In a second step, more detailed methods (electrical tomography and GPR) more precisely imaged the fault zone and revealed some structures that were observed in the trenches. Finally, one high‐resolution reflection seismic profile imaged the displacement of the fault at depths as large as 120 m and filled the gap between classical seismic reflection profiles and the shallow geophysical techniques. Like all geophysical surveys, the quality of the data is strongly dependent on the geologic environment and on the contrast of the physical properties between the juxtaposed formations. The combined use of various geophysical techniques is thus recommended for fault mapping, particularly for a preliminary investigation when the geological context is poorly defined.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1287
Author(s):  
Wenhui Liu ◽  
Changwei Xie ◽  
Wu Wang ◽  
Guiqian Yang ◽  
Yuxin Zhang ◽  
...  

Lakes on the Qinghai–Tibetan Plateau (QTP) have experienced significant changes, especially the prevailing lake expansion since 2000 in the endorheic basin. The influence of permafrost thawing on lake expansion is significant but rarely considered in previous studies. In this study, based on Landsat images and permafrost field data, the spatial-temporal area changes of lakes of more than 5 km2 in the endorheic basin on the QTP during 2000–2017 is examined and the impact of permafrost degradation on lake expansion is discussed. The main results are that permafrost characteristics and its degradation trend have close relationships with lake changes. Lake expansion in the endorheic basin showed a southwest–northeast transition from shrinking to stable to rapidly expanding, which corresponded well with the permafrost distribution from island-discontinuous to seasonally frozen ground to continuous permafrost. A dramatic lake expansion in continuous permafrost showed significant spatial differences; lakes expanded significantly in northern and eastern continuous permafrost with a higher ground ice content but slightly in southern continuous permafrost with a lower ground ice content. This spatial pattern was mainly attributed to the melting of ground ice in shallow permafrost associated with accelerating permafrost degradation. Whereas, some lakes in the southern zones of island-discontinuous permafrost were shrinking, which was mainly because the extended taliks arising from the intensified permafrost degradation have facilitated surface water and suprapermafrost groundwater discharge to subpermafrost groundwater and thereby drained the lakes. Based on observation and simulated data, the melting of ground ice at shallow depths below the permafrost table accounted for 21.2% of the increase in lake volume from 2000 to 2016.


Sign in / Sign up

Export Citation Format

Share Document