Characterization of the atmospheric gravity waves on Mars at altitudes 10-180 km as measured by the ACS/TGO solar occultations

Author(s):  
Ekaterina Starichenko ◽  
Denis Belyaev ◽  
Alexander Medvedev ◽  
Anna Fedorova ◽  
Oleg Korablev ◽  
...  

<p>Atmospheric gravity waves (GW) are periodic oscillations of air masses that manifest themselves as fluctuations of density, temperature, pressure and other quantities. Studying vertical distributions of density and temperature helps to characterize vertical propagation of GWs and evaluate their influence on the coupling between atmospheric layers.</p><p>We report on the first results of GWs retrievals in the Martian atmosphere from the solar occultation experiment performed by the Atmospheric Chemistry Suite (ACS) onboard the ExoMars Trace Gas Orbiter TGO [1]. This is the first time when GWs were measured simultaneously in almost the entire atmosphere. The ACS is a set of infrared spectrometers operating on the orbit of Mars since April 2018. The mid-infrared channel (ACS-MIR) is a cross-dispersion spectrometer covering the 2.3–4.2 µm spectral range with the resolving power reaching ~30 000. In the solar occultation mode the spectrometer can observe thin layers of the Martian thermosphere and lower atmosphere in strong (e.g. 2.7 and 4.3 μm) and weak (about 3 μm) CO<sub>2</sub> absorption bands with vertical resolution ~1 km. The near-infrared channel (ACS-NIR) is another echelle spectrometer working in the 0.73–1.6 µm spectral range with the resolving power ~25000 [2]. Due to the high resolution, these instruments (operating simultaneously) allow for deriving the temperature, pressure and density fluctuations at the unprecedented altitude range from 10 to 180 km. The dataset we present consists of more than 100 vertical profiles derived at seasons from the second half of MY34 to the beginning of MY35 in the both Martian hemispheres. The data analysis in IKI is supported by the RSF grant #20-42-09035.</p><p> </p><p>REFERENCES</p><p>[1] Korablev O. et al., 2018. The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Sci. Rev., 214:7. DOI 10.1007/s11214-017-0437-6.</p><p>[2] Fedorova A. et al., 2020. Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, eaay9522. DOI: 10.1126/science.aay9522.</p>

2020 ◽  
Author(s):  
Denis Belyaev ◽  
Anna Fedorova ◽  
Alexander Trokhimovskiy ◽  
Oleg Korablev ◽  
Franck Montmessin ◽  
...  

<p>The mid-infrared channel of the Atmospheric Chemistry Suite (ACS-MIR) is a cross-dispersion echelle spectrometer dedicated to solar occultation measurements in the 2.3–4.3 μm wavelength range [1]. The instrumental resolving power λ/Δλ reaches ~30 000, while the altitude resolution is ~1 km. ACS-MIR began regular science operations in April 2018 on board the ExoMars Trace Gas Orbiter (TGO). Each occultation session covers a spectral interval with one or a few CO<sub>2</sub> absorption bands appropriate for the atmospheric density and temperature retrievals.</p><p>In this paper, we present results from data analysis in the 2.65-2.7 μm spectral range hosting strong CO<sub>2</sub> absorption bands detectable up to 180 km. It provides us with unprecedented capability to profile CO<sub>2</sub> from 20 to 180 km, covering the troposphere, the mesosphere and the thermosphere of Mars. The homopause is found around ~130 km and CO<sub>2</sub> mixing ratio decreases from 96% to 20-40% at 180 km due to photolysis and molecular diffusion. A multiple iteration scheme was applied to retrieve CO<sub>2</sub> density and temperature from the rotational absorption lines, while pressure was estimated assuming hydrostatic equilibrium. The vertical profiles coincide well with the simultaneous occultations performed below 100 km by the near-infrared channel ACS-NIR [2]. At the moment, our MIR channel dataset is made of >100 profiles encompassing the second half of MY34 and the beginning of MY35 in both martian hemispheres. The retrievals of density/temperature profiles in IKI are funded by the RSF grant #20-42-09035.</p><p>REFERENCES</p><p>[1] Korablev O. et al., 2018. The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Sci. Rev., 214:7. DOI 10.1007/s11214-017-0437-6.</p><p>[2] Fedorova A. et al., 2020. Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, eaay9522. DOI: 10.1126/science.aay9522.</p>


2007 ◽  
Vol 7 (5) ◽  
pp. 625-628 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
O. Molchanov ◽  
P.-F. Biagi ◽  
M. Hayakawa

Abstract. We analyze variations of the LF subionospheric signal amplitude and phase from JJY transmitter in Japan (F=40 kHz) received in Petropavlovsk-Kamchatsky station during seismically quiet and active periods including also periods of magnetic storms. After 20 s averaging, the frequency range of the analysis is 0.28–15 mHz that corresponds to the period range from 1 to 60 min. Changes in spectra of the LF signal perturbations are found several days before and after three large earthquakes, which happened in November 2004 (M=7.1), August 2005 (M=7.2) and November 2006 (M=8.2) inside the Fresnel zone of the Japan-Kamchatka wavepath. Comparing the perturbed and background spectra we have found the evident increase in spectral range 10–25 min that is in the compliance with theoretical estimations on lithosphere-ionosphere coupling by the Atmospheric Gravity Waves (T>6 min). Similar changes are not found for the periods of magnetic storms.


1997 ◽  
Vol 15 (8) ◽  
pp. 1048-1056 ◽  
Author(s):  
R. L. Balthazor ◽  
R. J. Moffett

Abstract. A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs) and associated travelling ionospheric disturbances (TIDs) originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A 'fast' dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the 'fast' AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak) increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.


Nature ◽  
1973 ◽  
Vol 246 (5433) ◽  
pp. 412-413 ◽  
Author(s):  
J. E. BECKMAN ◽  
J. I. CLUCAS

2021 ◽  
Author(s):  
Francisco Brasil ◽  
Pedro Machado ◽  
Gabriella Gilli ◽  
Alejandro Cardesín-Moinelo ◽  
José E. Silva ◽  
...  

2018 ◽  
Vol 13 (4) ◽  
pp. 36
Author(s):  
Ranis Ibragimov ◽  
Pirooz Mohazzabi ◽  
Rebecca Roembke ◽  
Justin Van Ee

We examine stability of the vortex that represents one particular class of exact solution of a a nonlinear shallow water model describing atmospheric gravity waves circulating in an equatorial plane of a spherical planet. The mathematical model is represented by a two-dimensional free boundary Cauchy–Poisson problem on the nonstationary motion of a perfect uid around a solid circle with a sufficiently large radius so that the gravity is directed to the center of the circle. It is shown that the model admits two functionally independent nonlinear systems of shallow water equations. Two essential parameters that control stability of the vortex for both systems are identified. The order of their importance is analyzed and it is shown that one of the systems is more resistant to small perturbations and remains stable for larger range of these two parameters.


2016 ◽  
Vol 16 (18) ◽  
pp. 11521-11534 ◽  
Author(s):  
Luis F. Millán ◽  
Nathaniel J. Livesey ◽  
Michelle L. Santee ◽  
Jessica L. Neu ◽  
Gloria L. Manney ◽  
...  

Abstract. This study investigates the representativeness of two types of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from the Aura Microwave Limb Sounder (MLS), the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The MLS sampling acts as a proxy for a dense uniform sampling pattern typical of limb emission sounders, while HALOE and ACE-FTS represent coarse nonuniform sampling patterns characteristic of solar occultation instruments. First, this study revisits the impact of sampling patterns in terms of the sampling bias, as previous studies have done. Then, it quantifies the impact of different sampling patterns on the estimation of trends and their associated detectability. In general, we find that coarse nonuniform sampling patterns may introduce non-negligible errors in the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection. Lastly, we explore the impact of these sampling patterns on tropical vertical velocities derived from stratospheric water vapor measurements. We find that coarse nonuniform sampling may lead to a biased depiction of the tropical vertical velocities and, hence, to a biased estimation of the impact of the mechanisms that modulate these velocities. These case studies suggest that dense uniform sampling such as that available from limb emission sounders provides much greater fidelity in detecting signals of stratospheric change (for example, fingerprints of greenhouse gas warming and stratospheric ozone recovery) than coarse nonuniform sampling such as that of solar occultation instruments.


Sign in / Sign up

Export Citation Format

Share Document