infrared channel
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ann Carine Vandaele ◽  
Frank Daerden ◽  
Ian R. Thomas ◽  
Shohei Aoki ◽  
Cédric Depiesse ◽  
...  

<p>The NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter has been designed to investigate the composition of Mars' atmosphere, with a particular focus on trace gases, clouds and dust. The instrument probes the ultraviolet and infrared regions covering large parts of the 0.2-4.3 µm spectral range [1,2], with 3 spectral channels: a solar occultation channel (SO – Solar Occultation; 2.3–4.3 μm), a second infrared channel capable of nadir, solar occultation, and limb sounding (LNO – Limb Nadir and solar Occultation; 2.3–3.8 μm), and an ultraviolet/visible channel (UVIS – Ultraviolet and Visible Spectrometer, 200–650 nm). Since its arrival at Mars in April 2018, NOMAD performed solar occultation, nadir and limb observations dedicated to the determination of the composition and structure of the atmosphere.</p><p>NOMAD has been accumulating data about the Martian atmosphere and its surface since its insertion. We will present some results covering the atmosphere composition including clouds and dust, climatologies of water, carbon monoxide and ozone. We also report on the different discoveries highlighted by the instrument by pointing to a series of contributions to this conference that will present in detail several specific studies, like recent progress in the instrument calibration, the latest CO2 and temperature vertical profiles, studies of aerosol nature and distribution, water vapor profiles and variability, carbon monoxide vertical distribution, dayglow observations; detection of HCl, its vertical profiles and in general advances in the analysis of the spectra recorded by the three channels of NOMAD.</p><p>References</p><p>[1] Vandaele, A.C., et al., 2015. Planet. Space Sci. 119, 233-249.</p><p>[2] Vandaele et al., 2018. Space Sci. Rev., 214:80, doi.org/10.1007/s11214-11018-10517-11212.</p><p> </p>


2021 ◽  
Vol 13 (9) ◽  
pp. 1852
Author(s):  
Yiren Wang ◽  
Dong Liu ◽  
Wanyi Xie ◽  
Ming Yang ◽  
Zhenyu Gao ◽  
...  

The formation and evolution of clouds are associated with their thermodynamical and microphysical progress. Previous studies have been conducted to collect images using ground-based cloud observation equipment to provide important cloud characteristics information. However, most of this equipment cannot perform continuous observations during the day and night, and their field of view (FOV) is also limited. To address these issues, this work proposes a day and night clouds detection approach integrated into a self-made thermal-infrared (TIR) all-sky-view camera. The TIR camera consists of a high-resolution thermal microbolometer array and a fish-eye lens with a FOV larger than 160°. In addition, a detection scheme was designed to directly subtract the contamination of the atmospheric TIR emission from the entire infrared image of such a large FOV, which was used for cloud recognition. The performance of this scheme was validated by comparing the cloud fractions retrieved from the infrared channel with those from the visible channel and manual observation. The results indicated that the current instrument could obtain accurate cloud fraction from the observed infrared image, and the TIR all-sky-view camera developed in this work exhibits good feasibility for long-term and continuous cloud observation.


Author(s):  
Dineshkumar K. Sankhala ◽  
Prashant Kumar ◽  
Sanjib K. Deb ◽  
Neeru Jaiswal ◽  
C. M. Kishtawal ◽  
...  

2021 ◽  
Author(s):  
Arianna Piccialli ◽  
Ann Carine Vandaele ◽  
Yannick Willame ◽  
Shohei Aoki ◽  
Cedric Depiesse ◽  
...  

<p>We will present the vertical distribution of <strong>ozone</strong> obtained from <strong>NOMAD-UVIS solar occultations</strong> and we will compare the results of three retrieval schemes.</p><p><strong>NOMAD</strong> (Nadir and Occultation for MArs Discovery) is a spectrometer composed of 3 channels: 1) a solar occultation channel (SO) operating in the infrared (2.3-4.3 μm); 2) a second infrared channel LNO (2.3-3.8 μm) capable of doing nadir, as well as solar occultation and limb; and 3) an ultraviolet/visible channel <strong>UVIS</strong> (200-650 nm) that can work in the three observation modes [1,2].</p><p>The UVIS channel has a spectral resolution <1.5 nm. In the solar occultation mode it is mainly devoted to study the climatology of <strong>ozone</strong> and <strong>aerosols</strong> content [3].</p><p>Since the beginning of operations, on 21 April 2018, NOMAD UVIS acquired more than 4000 solar occultations with an almost complete coverage of the planet.</p><p>NOMAD-UVIS spectra are simulated using three different retrieval scheme:</p><p>1) An onion peeling approach based on [4,5] deriving slant columns at the different altitudes sounded, from which local densities are obtained;</p><p>2) The line-by-line radiative transfer code ASIMUT-ALVL developed at IASB-BIRA [6] using the Optimal Estimation Method to derive the local density profile in one go (on all transmittances of one occultation observation);</p><p>3) A direct onion peeling method deriving sequentially from top to bottom the local densities in the different layers probed.</p><p>We will compare results obtained from the different retrieval methods as well as their uncertainties and we will discuss the advantages and difficulties of each method.</p><p><strong>References</strong></p><p>[1] Vandaele, A.C., et al., Planetary and Space Science, Vol. 119, pp. 233–249, 2015.</p><p>[2] Neefs, E., et al., Applied Optics, Vol. 54 (28), pp. 8494-8520, 2015.</p><p>[3] M.R. Patel et al., In: Appl. Opt. 56.10 (2017), pp. 2771–2782. DOI: 10.1364/AO.56.002771.</p><p>[4] Quémerais, E.,et al. J.Geophys. Res. (Planets)111, 9, 2006.</p><p>[5] Piccialli, A. et al., Planetary and Space Science, 113-114(2015) 321–335</p><p>[6] Vandaele, A.C., et al., JGR, 2008. 113 doi:10.1029/2008JE003140.</p>


2021 ◽  
Vol 13 (3) ◽  
pp. 374
Author(s):  
David Smith ◽  
Samuel E. Hunt ◽  
Mireya Etxaluze ◽  
Dan Peters ◽  
Tim Nightingale ◽  
...  

Providing uncertainties in satellite datasets used for Earth observation can be a daunting prospect because of the many processing stages and input data required to convert raw detector counts to calibrated radiances. The Sea and Land Surface Temperature Radiometer (SLSTR) was designed to provide measurements of the Earth’s surface for operational and climate applications. In this paper the authors describe the traceability chain and derivation of uncertainty estimates for the thermal infrared channel radiometry. Starting from the instrument model, the contributing input quantities are identified to build up an uncertainty effects tree. The characterisation of each input effect is described, and uncertainty estimates provided which are used to derive the combined uncertainties as a function of scene temperature. The SLSTR Level-1 data products provide uncertainty estimates for fully random effects (noise) and systematic effects that can be mapped for each image pixel, examples of which are shown.


2021 ◽  
Author(s):  
Cecep E. Rustana ◽  
A. A. Saputro ◽  
Trismidianto ◽  
Risyanto ◽  
A. Istikanah

Author(s):  
S. F. Brezgun ◽  
A. S. Negru

To achieve accuracy and stability in measuring the length of the metal cord at the stage of its manufacture, it is necessary to modernize the existing rope-twisting equipment. The upgrade introduced a new algorithm for rope-twisting equipment, changed the length accounting system of the steel cord, used the latest equipment and technology. A contactless electric power transmission system and a wireless data transmission system based on an infrared channel have been introduced.The use of the latest technologies and our own innovations allowed us to obtain a completely new type of rope-twisting machine that can produce metal cord according to the requirements of the consumer’s specification.


2020 ◽  
Author(s):  
Ann Carine Vandaele ◽  
Frank Daerden ◽  
Ian R. Thomas ◽  
Shohei Aoki ◽  
Cédric Depiesse ◽  
...  

<p>The NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter has been designed to investigate the composition of Mars' atmosphere, with a particular focus on trace gases, clouds and dust. The instrument probes the ultraviolet and infrared regions covering large parts of the 0.2-4.3 µm spectral range [1,2], with 3 spectral channels: a solar occultation channel (SO – Solar Occultation; 2.3–4.3 μm), a second infrared channel capable of nadir, solar occultation, and limb sounding (LNO – Limb Nadir and solar Occultation; 2.3–3.8 μm), and an ultraviolet/visible channel (UVIS – Ultraviolet and Visible Spectrometer, 200–650 nm).</p> <p>Since its arrival at Mars in April 2018, NOMAD performed solar occultation, nadir and limb observations dedicated to the determination of the composition and structure of the atmosphere. Here we report on the different discoveries highlighted by the instrument during its first full Martian year of observations: investigation of the 2018 Global dust storm and its impact on the water uplifting and escape, on temperature and pressure increases within the atmosphere; dust and ice clouds distribution; ozone measurements; dayglow observations; detection of HCl vertical profiles and in general advances in the analysis of the spectra recorded by the three channels of NOMAD.</p> <p>References</p> <p>[1] Vandaele, A.C., et al., 2015. Planet. Space Sci. 119, 233-249.</p> <p>[2] Vandaele et al., 2018. Space Sci. Rev., 214:80, doi.org/10.1007/s11214-11018-10517-11212.</p>


2020 ◽  
Vol 2020 (1) ◽  
pp. 82-86
Author(s):  
Sorour Mohajerani ◽  
Mark S. Drew ◽  
Parvaneh Saeedi

Removing the effect of illumination variation in images has been proved to be beneficial in many computer vision applications such as object recognition and semantic segmentation. Although generating illumination-invariant images has been studied in the literature before, it has not been investigated on real 4-channel (4D) data. In this study, we examine the quality of illumination-invariant images generated from red, green, blue, and near-infrared (RGBN) data. Our experiments show that the near-infrared channel substantively contributes toward removing illumination. As shown in our numerical and visual results, the illumination-invariant image obtained by RGBN data is superior compared to that obtained by RGB alone.


2020 ◽  
Vol 640 ◽  
pp. A50 ◽  
Author(s):  
F. F. Bauer ◽  
M. Zechmeister ◽  
A. Kaminski ◽  
C. Rodríguez López ◽  
J. A. Caballero ◽  
...  

The high-resolution, dual channel, visible and near-infrared spectrograph CARMENES offers exciting opportunities for stellar and exoplanetary research on M dwarfs. In this work we address the challenge of reaching the highest radial velocity precision possible with a complex, actively cooled, cryogenic instrument, such as the near-infrared channel. We describe the performance of the instrument and the work flow used to derive precise Doppler measurements from the spectra. The capability of both CARMENES channels to detect small exoplanets is demonstrated with the example of the nearby M5.0 V star CD Cet (GJ 1057), around which we announce a super-Earth (4.0 ± 0.4 M⊕) companion on a 2.29 d orbit.


Sign in / Sign up

Export Citation Format

Share Document