The Role of Soil Pipes and Pipeflow in Headcut Migration Processes

Author(s):  
Ximeng Xu ◽  
Glenn V. Wilson ◽  
Fenli Zheng ◽  
Qiuhong Tang

<p>Headcut formation and migration is sometimes mistaken as the result of overland flow without realizing that the headcut was formed by or significantly influenced by flow through soil pipes into the headcut. To determine the effects of a soil pipe and flow through a soil pipe on headcut migration, laboratory experiments were conducted under free-drainage conditions and conditions of a shallow water table. Soil beds with a 3-cm deep initial headcut were formed in a flume with a 1.5-cm diameter soil pipe 15 cm below the bed surface. Overland flow and flow into the soil pipe was applied at a constant rate of 68 L/min and 1 L/min, respectively, at the upper end of the flume. The headcut migration rate and sediment concentrations in both surface (channel) and subsurface (soil pipe) flows were measured with time. The typical response without a soil pipe was the formation of a headcut that extended in depth until an equilibrium scour hole was established at which time the headcut migrated upslope. The presence of a soil pipe below the channel, and particularly the phenomena of flow through a soil pipe and into the headcut, whether by seepage from a shallow water table or upslope inflow, significantly impacted the headcut migration. Pipeflow caused erosion inside of the soil pipe at the same time that runoff was causing a scour hole to deepen and migrate. When the headcut extended to the depth of the soil pipe, surface runoff entering the scour hole interacted with flow from the soil pipe also entering the scour hole. This interaction dramatically altered the headcut processes, greatly accelerated the headcut migration rates and sediment concentrations. Conditions in which a perched water table provided seepage into the soil pipe in addition to pipeflow increased the sediment concentration by 42% and the headcut migration rate by 47% compared with pipeflow under free-drainage conditions. The time that overland flow converged with subsurface flow was advanced under seepage conditions by 2.3 and 5.0 minutes compared with free-drainage condition. This study confirmed that pipeflow dramatically accelerates headcut migration especially under conditions of shallow perched water tables and highlights the importance of understanding these processes in headcut migration processes.</p>

2018 ◽  
Vol 22 (1) ◽  
pp. 71-87 ◽  
Author(s):  
Claire Lauvernet ◽  
Rafael Muñoz-Carpena

Abstract. Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in the modeled system response, reducing the typical predominance of saturated hydraulic conductivity on infiltration under deep water table conditions. This study demonstrates that when present, the WT should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.


2017 ◽  
Author(s):  
Claire Lauvernet ◽  
Rafael Muñoz-Carpena

Abstract. Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper, we developed a physically-based numerical algorithm (SWINGO) that allows representing soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment and pesticide transport. This new version of VFSMOD was evaluated with two contrasted benchmark field studies in France (sandy-loam soil under Mediterranean semi-continental climate, and silty-clay under temperate Oceanic climate), where testing of the model with field data showed promising results. The analysis showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, two global sensitivity and uncertainty analysis (GSA) methods, Morris and eFAST, were applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in the modelled system response, reducing the predominance of saturated hydraulic conductivity on infiltration under typical deep water table conditions. This study demonstrates that when present, WT should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.


Ground Water ◽  
2003 ◽  
Vol 41 (7) ◽  
pp. 964-972 ◽  
Author(s):  
James B. Shanley ◽  
K. Niclas Hjerdt ◽  
Jeffrey J. McDonnell ◽  
Carol Kendall

2019 ◽  
Vol 213 ◽  
pp. 486-498 ◽  
Author(s):  
Guanfang Sun ◽  
Yan Zhu ◽  
Ming Ye ◽  
Jinzhong Yang ◽  
Zhongyi Qu ◽  
...  

2016 ◽  
Vol 171 ◽  
pp. 131-141 ◽  
Author(s):  
Zhongyi Liu ◽  
Hang Chen ◽  
Zailin Huo ◽  
Fengxin Wang ◽  
Clinton C. Shock

Sign in / Sign up

Export Citation Format

Share Document