A user-friendly probabilistic earthquake source inversion framework for joint inversion of seismic, geodetic, and gravitational signals - The Grond toolkit

Author(s):  
Sebastian Heimann ◽  
Marius Isken ◽  
Daniela Kühn ◽  
Hannes Vasyura-Bathke ◽  
Henriette Sudhaus ◽  
...  

<p>Seismic source and moment tensor waveform inversion is often ill-posed or non-unique if station coverage is poor or signals are weak. Three key ingredients can help in these situations: (1) probabilistic inference and global search of the full model space, (2) joint optimisation with datasets yielding complementary information, and (3) robust source parameterisation or additional source constraints. These demands lead to vast technical challenges, on the performance of forward modelling, on the optimisation algorithms, as well as on visualisation, optimisation configuration, and management of the datasets. Implementing a high amount of automation is inevitable.</p><p>To tackle all these challenges, we are developing a sophisticated new seismic source optimisation framework, Grond. With its innovative Bayesian bootstrap optimiser, it is able to efficiently explore large model spaces, the trade-offs and the uncertainties of source parameters. The program is highly flexible with respect to the adaption to specific source problems, the design of objective functions, and the diversity of empirical datasets.</p><p>It uses an integrated, robust waveform data processing, and allows for interactive visual inspection of many aspects of the optimisation problem, including visualisation of the result uncertainties. Grond has been applied to CMT moment tensor and finite-fault optimisations at all scales, to nuclear explosions, to a meteorite atmospheric explosion, and to volcano-tectonic processes during caldera collapse and magma ascent. Hundreds of seismic events can be handled in parallel given a single optimisation setup.</p><p>Grond can be used to optimise simultaneously seismic waveforms, amplitude spectra, waveform features, phase picks, static displacements from InSAR and GNSS, and gravitational signals.</p><p>Grond is developed as an open-source package and community effort. It builds on and integrates with other established open-source packages, like Kite (for InSAR) and Pyrocko (for seismology).</p>

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

AbstractThis study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Mw = 6.3 Yogyakarta earthquake which occurred on May 27, 2006. The process involved using moment tensor inversion to determine the fault plane parameters and joint inversion which were further applied to understand the spatial and temporal slip distributions during the earthquake. Moreover, coseismal slip distribution was overlaid with the relocated aftershock distribution to determine the stress field variations around the tectonic area. Meanwhile, the moment tensor inversion made use of near-field data and its Green’s function was calculated using the extended reflectivity method while the joint inversion used near-field and teleseismic body wave data which were computed using the Kikuchi and Kanamori methods. These data were filtered through a trial-and-error method using a bandpass filter with frequency pairs and velocity models from several previous studies. Furthermore, the Akaike Bayesian Information Criterion (ABIC) method was applied to obtain more stable inversion results and different fault types were discovered. Strike–slip and dip-normal were recorded for the mainshock and similar types were recorded for the 8th aftershock while the 9th and 16th June were strike slips. However, the fault slip distribution from the joint inversion showed two asperities. The maximum slip was 0.78 m with the first asperity observed at 10 km south/north of the mainshock hypocenter. The source parameters discovered include total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4 with a depth of 12 km and a duration of 28 s. The slip distribution overlaid with the aftershock distribution showed the tendency of the aftershock to occur around the asperities zone while a normal oblique focus mechanism was found using the joint inversion.


2013 ◽  
Vol 5 (2) ◽  
pp. 1125-1162 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch

Abstract. Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters themselves, but also estimates of their uncertainties are of great practical importance. Probabilistic source inversion (Bayesian inference) is very adapted to this challenge, provided that the parameter space can be chosen small enough to make Bayesian sampling computationally feasible. We propose a framework for PRobabilistic Inference of Source Mechanisms (PRISM) that parameterises and samples earthquake depth, moment tensor, and source time function efficiently by using information from previous non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of >1000 STFs by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits to propagate these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. WA95-WA103 ◽  
Author(s):  
Oscar Jarillo Michel ◽  
Ilya Tsvankin

Waveform inversion (WI), which has been extensively used in reflection seismology, could provide improved velocity models and event locations for microseismic surveys. Here, we develop an elastic WI algorithm for anisotropic media designed to estimate the 2D velocity field along with the source parameters (location, origin time, and moment tensor) from microseismic data. The gradient of the objective function is obtained with the adjoint-state method, which requires just two modeling simulations at each iteration. In the current implementation the source coordinates and velocity parameters are estimated sequentially at each stage of the inversion to minimize trade-offs and improve the convergence. Synthetic examples illustrate the accuracy of the inversion for layered VTI (transversely isotropic with a vertical symmetry axis) media, as well as the sensitivity of the velocity-analysis results to noise, the length of the receiver array, errors in the initial model, and variability in the moment tensor of the recorded events.


2019 ◽  
Vol 219 (2) ◽  
pp. 1148-1162
Author(s):  
Jiun-Ting Lin ◽  
Wu-Lung Chang ◽  
Diego Melgar ◽  
Amanda Thomas ◽  
Chi-Yu Chiu

SUMMARY We test the feasibility of GPS-based rapid centroid moment tensor (GPS CMT) methods for Taiwan, one of the most earthquake prone areas in the world. In recent years, Taiwan has become a leading developer of seismometer-based earthquake early warning systems, which have successfully been applied to several large events. The rapid determination of earthquake magnitude and focal mechanism, important for a number of rapid response applications, including tsunami warning, is still challenging because of the limitations of near-field inertial recordings. This instrumental issue can be solved by an entirely different observation system: a GPS network. Taiwan is well posed to take advantage of GPS because in the last decade it has developed a very dense network. Thus, in this research, we explore the suitability of the GPS CMT inversion for Taiwan. We retrospectively investigate six moderate to large (Mw6.0 ∼ 7.0) earthquakes and propose a resolution test for our model, we find that the minimum resolvable earthquake magnitude of this system is ∼Mw5.5 (at 5 km depth). Our tests also suggest that the finite fault complexity, often challenging for the near-field methodology, can be ignored under such good station coverage and thus, can provide a fast and robust solution for large earthquake directly from the near field. Our findings help to understand and quantify how the proposed methodology could be implemented in real time and what its contributions could be to the overall earthquake monitoring system.


Author(s):  
S. Sangeetha ◽  
S.T.G. Raghukanth

The article aims at developing a stochastic model which simulates spatial distribution of slip on the fault plane. This is achieved by analysing a large dataset of 303 finite-fault rupture models from 152 past earthquakes with varying fault mechanisms and in the magnitude range of 4.11-9.12. New scaling relations to predict the seismic source parameters such as fault length, fault width, rupture area, mean and standard deviation of slip have been derived for distinct fault mechanisms. The developed methodology models the spatial variability of slip as a two-dimensional von Karman power spectral density function (PSD) and correlation lengths are estimated. The proposed stochastic slip model is validated by comparing the simulated near-field ground response with the recorded data available for the 20th September 1999 Chi-Chi earthquake, Taiwan.


2020 ◽  
Vol 91 (2A) ◽  
pp. 745-757
Author(s):  
Xu Zhang ◽  
Li-Sheng Xu ◽  
Jun Luo ◽  
Wanpeng Feng ◽  
Hai-Lin Du ◽  
...  

Abstract On 8 August 2017, an Ms 6.6 earthquake occurred in the northeastern Tien Shan orogenic belt. To reveal the source characteristics of this earthquake completely, the teleseismic and near-field seismic waveform data were collected as well as the coseismic Interferometric Synthetic Aperture Radar displacement data, and the methods of the backprojection and the finite-fault joint inversion were adopted. The backprojection of the teleseismic recordings indicates a unilateral rupture propagating 15 km westward. Two stages of the rupture were recognized from the backprojection results: in the first ∼5  s, the rupture took place near the hypocenter, with an accelerating energy release but a small rupture velocity; then the rupture extended to the west, with a decelerating energy release but a relatively fast rupture velocity. The joint inversion of the multiple datasets shows a major slip asperity of about 24  km × 18  km. The asperity extended mainly to the west, with a duration of approximately 10 s. The average rupture velocity over the asperity was estimated to be approximately 2.0  km/s, which is close to that 1.9  km/s estimated by the backprojection. It is interesting that the high-frequency sources were aligned almost on the margin of the slip asperity. Moreover, the occurrence of the earthquake sequence is found to relate with the low-VP/VS zone, implying a tectonic property, which controls the nucleation and rupture of earthquakes.


1987 ◽  
Vol 77 (5) ◽  
pp. 1558-1578
Author(s):  
Kristín S. Vogfjörd ◽  
Charles A. Langston

Abstract Average source parameters of the 1968 Meckering, Australia earthquake are obtained by the inversion of body waves. The objectives of the inversion are the elements of the moment tensor and the source-time history. An optimum source depth of 3 km is determined, but because of source complexity the point source assumption fails and the moment tensor obtained at that depth has a large nondouble-couple term, compensated linear vector dipole = 34 per cent. The source parameters of the major double-couple are: strike = 341°; dip = 37°; rake = 61°; and seismic moment = 8.2 ×1025 dyne-cm. The source-time function is of approximately 4 sec duration, with a long rise time and a sharp fall-off. The fault length is constrained on the surface by the observed surface break, and results from vertical displacement modeling suggest a width of approximately 10 km in the middle, assuming a dip of 37°. That restricts the entire faulted area to lie above 6 km depth. Two finite fault models for the earthquake are presented, with rupture initiating at a point (1) near the top of the fault and (2) at the bottom of the fault. Both models produce similar long-period synthetics, but based on the short-period waveforms, model 1 is favored. It is argued that such a rupture process is the most reasonable in this cold shield region.


1991 ◽  
Vol 81 (1) ◽  
pp. 191-201
Author(s):  
Steven M. Day ◽  
Keith L. McLaughlin

Abstract Spall may be a significant secondary source of seismic waves from underground explosions. The proper representation of spall as a seismic source is important for forward and inverse modeling of explosions for yield estimation and discrimination studies. We present a new derivation of a widely used point force representation for spall, which is based on a horizontal tension crack model. The derivation clarifies the relationship between point force and moment tensor representations of the tension crack. For wavelengths long compared with spall depth, the two representations are equivalent, and the moment tensor time history is proportional to the doubly integrated time history of the point force. Numerical experiments verify that, for regional seismic phases, this equivalence is valid for all frequencies for which the point-source (long wavelength) approximation is valid. Further analysis shows that the moment tensor and point force representations retain their validity for nonplanar spall surfaces, provided that the average dip of the surface is small. The equivalency of the two representations implies that a singular inverse problem will result from attempts to infer simultaneously the spectra of both of these source terms from seismic waveforms. If the spall moment tensor alone is estimated by inversion of waveform data, the inferred numerical values of its components will depend inversely upon the source depth that is assumed in the inversion formalism.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 1055-1069 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch

Abstract. Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters themselves but also estimates of their uncertainties are of great practical importance. Probabilistic source inversion (Bayesian inference) is very adapted to this challenge, provided that the parameter space can be chosen small enough to make Bayesian sampling computationally feasible. We propose a framework for PRobabilistic Inference of Seismic source Mechanisms (PRISM) that parameterises and samples earthquake depth, moment tensor, and source time function efficiently by using information from previous non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of >1000 source time functions (STFs) by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits propagating these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible.


2021 ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

Abstract This study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Yogyakarta earthquake of magnitude Mw = 6.3 on May 27, 2006. Therefore, this study is to provide a more precise answer to the controversial source mechanism. This study uses moment tensor inversion to obtain fault plane parameters and joint inversion to obtain spatial and temporal slip distributions during an earthquake. The coseismic slip distribution is overlaid with the relocated aftershock distribution to see the stress field variations around the tectonic area of the study. Moment tensor inversion uses near-field data, and joint inversion uses near-field and teleseismic body wave data. The data is filtered by trial and error using a bandpass filter with frequency pairs and velocity models from several previous studies. The green's function for moment tensor inversion calculated using the extended reflectivity method and joint inversion computed using the Kikuchi and Kanamori methods. In this study, we apply the Akaike Bayesian Information Criterion (ABIC) method to obtain more stable inversion results. The results of the mainshock and aftershock moment tensor inversion show different fault types. The mainshock fault types are strike-slip and dip-normal types, while the 8th aftershock is of the same type as the mainshock, while the 9th and 16th June are strike slips. The joint inversion results show two asperities. The maximum slip is 0.78 m, with the first asperity 10 km south of the mainshock and the second asperity 10 km north of the mainshock. The obtained source parameters are total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4, with a source depth of 12 km and a source duration of 28 seconds. Slip distribution overlay with aftershock distribution shows compatibility. The type of focus mechanism that results from this joint inversion is the oblique.


Sign in / Sign up

Export Citation Format

Share Document