Multiple-tool approach of combining microbial markers with artificial and natural tracers to specify the origin of fecal contamination in a karst groundwater catchment

Author(s):  
Michael Sinreich

<p>Diverse tools do exist to study the pathway from the source of a contamination to groundwater and related springs. The backward approach, i.e. sampling spring water to determine the origin of contamination, is more complex and requires multiple information. Microbial source tracking using host-specific markers is one of the tools, which however has shown to be insufficient as a stand-alone method, particularly in karst groundwater catchments.    </p><p>A karst spring in the Swiss Jura Mountains was studied with respect to the occurrence and correlation of a set of fecal indicators, including classical parameters as well as a number of bacteroidale markers. Sporadic monitoring proved the impact on spring water quality, mainly during high water stages. Additional event-focused sampling over varying recharge intensities evidenced a more detailed and divergent pattern of individual indicators. In particular, the results arose the question how to interpret peaks of human fecal markers in the rural-dominated catchment.</p><p>A multiple-tool approach, complementing fecal indicator monitoring with artificial tracer experiments and natural tracers measurements, assessed the input, storage and transfer of potential contaminants in order to specify the origin of both ruminant and human fecal contaminations. Natural tracers allowed for distinguishing between water components from the saturated zone, from the soil/epikarst storage, or from freshly infiltrated rainwater. Furthermore, the breakthrough of injected dye tracers, and their remobilization during subsequent recharge events, respectively, were correlated to the occurrence of fecal markers. System’s residence time distribution over discharge, deduced from numerous former dye tracing tests, also allowed for attributing maximum travel distances to their arrival.</p><p>The findings of the approach hypothesize the origin of human fecal contamination at the spring being in relationship with septic tanks undergoing concentrated overflow already at moderate rainfall intensities. Those intensities are, however, not sufficient to transport diffuse ruminant contamination through the vadose zone. Linkage with vulnerability assessment and land-use information can finally better locate the potential source points. Such toolbox provides not only useful basics for groundwater protection and catchment management, but also insight into general processes governing fate and transport of fecal contaminants in a karst groundwater environment.</p>

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2162 ◽  
Author(s):  
Hyatt Green ◽  
Daniel Weller ◽  
Stephanie Johnson ◽  
Edward Michalenko

Fecal contamination of waterbodies due to poorly managed human and animal waste is a pervasive problem that can be particularly costly to address, especially if mitigation strategies are ineffective at sufficiently reducing the level of contamination. Identifying the most worrisome sources of contamination is particularly difficult in periurban streams with multiple land uses and requires the distinction of municipal, agricultural, domestic pet, and natural (i.e., wildlife) wastes. Microbial source-tracking (MST) methods that target host-specific members of the bacterial order Bacteroidales and others have been used worldwide to identify the origins of fecal contamination. We conducted a dry-weather study of Onondaga Creek, NY, where reducing fecal contamination has been approached mainly by mitigating combined sewer overflow events (CSOs). Over three sampling dates, we measured in-stream concentrations of fecal indicator bacteria; MST markers targeting human, ruminant, and canine sources; and various physical–chemical parameters to identify contaminants not attributable to CSOs or stormwater runoff. We observed that despite significant ruminant inputs upstream, these contaminants eventually decayed and/or were diluted out and that high levels of urban bacterial contamination are most likely due to failing infrastructure and/or illicit discharges independent of rain events. Similar dynamics may control other streams that transition from agricultural to urban areas with failing infrastructure.


Author(s):  
Laurice Beatrice Raphaelle O. dela Peña ◽  
Kevin L. Labrador ◽  
Mae Ashley G. Nacario ◽  
Nicole R. Bolo ◽  
Windell L. Rivera

Abstract Laguna Lake is an economically important resource in the Philippines, with reports of declining water quality due to fecal pollution. Currently, monitoring methods rely on counting fecal indicator bacteria, which does not supply information on potential sources of contamination. In this study, we predicted sources of Escherichia coli in lake stations and tributaries by establishing a fecal source library composed of rep-PCR DNA fingerprints of human, cattle, swine, poultry, and sewage samples (n = 1,408). We also evaluated three statistical methods for predicting fecal contamination sources in surface waters. Random forest (RF) outperformed k-nearest neighbors and discriminant analysis of principal components in terms of average rates of correct classification in two- (84.85%), three- (82.45%), and five-way (74.77%) categorical splits. Overall, RF exhibited the most balanced prediction, which is crucial for disproportionate libraries. Source tracking of environmental isolates (n = 332) revealed the dominance of sewage (47.59%) followed by human sources (29.22%), poultry (12.65%), swine (7.23%), and cattle (3.31%) using RF. This study demonstrates the promising utility of a library-dependent method in augmenting current monitoring systems for source attribution of fecal contamination in Laguna Lake. This is also the first known report of microbial source tracking using rep-PCR conducted in surface waters of the Laguna Lake watershed.


2015 ◽  
Vol 82 (4) ◽  
pp. 1316-1323 ◽  
Author(s):  
W. Ahmed ◽  
J. P. S. Sidhu ◽  
K. Smith ◽  
D. J. Beale ◽  
P. Gyawali ◽  
...  

ABSTRACTRecreational and potable water supplies polluted with human wastewater can pose a direct health risk to humans. Therefore, sensitive detection of human fecal pollution in environmental waters is very important to water quality authorities around the globe. Microbial source tracking (MST) utilizes human fecal markers (HFMs) to detect human wastewater pollution in environmental waters. The concentrations of these markers in raw wastewater are considered important because it is likely that a marker whose concentration is high in wastewater will be more frequently detected in polluted waters. In this study, quantitative PCR (qPCR) assays were used to determine the concentrations of fecal indicator bacteria (FIB)Escherichia coliandEnterococcusspp., HFMsBacteroidesHF183, human adenoviruses (HAdVs), and polyomaviruses (HPyVs) in raw municipal wastewater influent from various climatic zones in Australia.E. colimean concentrations in pooled human wastewater data sets (from various climatic zones) were the highest (3.2 × 106gene copies per ml), followed by those of HF183 (8.0 × 105gene copies per ml) andEnterococcusspp. (3.6 × 105gene copies per ml). HAdV and HPyV concentrations were 2 to 3 orders of magnitude lower than those of FIB and HF183. Strong positive and negative correlations were observed between the FIB and HFM concentrations within and across wastewater treatment plants (WWTPs). To identify the most sensitive marker of human fecal pollution, environmental water samples were seeded with raw human wastewater. The results from the seeding experiments indicated thatBacteroidesHF183 was more sensitive for detecting human fecal pollution than HAdVs and HPyVs. Since the HF183 marker can occasionally be present in nontarget animal fecal samples, it is recommended that HF183 along with a viral marker (HAdVs or HPyVs) be used for tracking human fecal pollution in Australian environmental waters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dong Li ◽  
Laurie C. Van De Werfhorst ◽  
Brandon Steets ◽  
Jared Ervin ◽  
Jill L. S. Murray ◽  
...  

Microbial source tracking (MST) can identify and locate surf zone fecal indicator bacteria (FIB) sources. However, DNA-based fecal marker results may raise new questions, since FIB and DNA marker sources can differ. Here, during 2 years of summertime (dry season) MST for a Goleta, California recreational beach, surf zone FIB were mainly from gulls, yet low level human-associated DNA-based fecal marker (HF183) was detected in 25 and 14% of surf zone water samples, respectively. Watershed sources were hypothesized because dry weather creek waters had elevated FIB, and runoff-generating rain events mobilized human (and dog) fecal markers and Salmonella spp. into creeks, with human marker HF183 detected in 40 and 50% of creek water samples, dog markers detected in 70 and 50% of samples, and Salmonella spp. in 40 and 33.3% of samples, respectively over 2 years. However, the dry weather estuary outlet was bermed in the first study year; simultaneously, creek fecal markers and pathogens were lower or similar to surf zone results. Although the berm breached in the second year, surf zone fecal markers stayed low. Watershed sediments, intertidal beach sands, and nearshore sediments were devoid of HF183 and dog-associated DNA markers. Based on dye tests and groundwater sampling, beach sanitary sewers were not leaking; groundwater was also devoid of HF183. Offshore sources appeared unlikely, since FIB and fecal markers decreased along a spatial gradient from the surf zone toward nearshore and offshore ocean waters. Further, like other regional beaches, surf zone HF183 corresponded significantly to bather counts, especially in the afternoons when there were more swimmers. However, morning detections of surf zone HF183 when there were few swimmers raised the possibility that the wastewater treatment plant (WWTP) offshore outfall discharged HF183 overnight which transported to the surf zone. These findings support that there may be lowest achievable limits of surf zone HF183 owing to several chronic and permanent, perhaps diurnal, low concentration sources.


Author(s):  
Latifah Hamzah ◽  
Alexandria B. Boehm ◽  
Jennifer Davis ◽  
Amy J. Pickering ◽  
Marlene Wolfe ◽  
...  

In sub-Saharan Africa, many families travel to collect water and store it in their homes for daily use, presenting an opportunity for the introduction of fecal contamination. One stored and one source water sample were each collected from 45 households in rural Kenya. All 90 samples were analyzed for fecal indicator bacteria (E. coli and enterococci) and species-specific contamination using molecular microbial source tracking assays. Human (HF183), avian (GFD), and ruminant (BacR) contamination were detected in 52, two, and four samples, respectively. Stored water samples had elevated enterococci concentrations (p < 0.01, Wilcoxon matched pairs test) and more frequent BacR detection (89% versus 27%, p < 0.01, McNemar’s exact test) relative to source water samples. fsQCA (fuzzy set qualitative comparative analysis) was conducted on the subset of households with no source water BacR contamination to highlight combinations of factors associated with the introduction of BacR contamination to stored water supplies. Three combinations were identified: (i) ruminants in the compound, safe water extraction methods, and long storage time, (ii) ruminants, unsafe water extraction methods, and no soap at the household handwashing station, and (iii) long storage time and no soap. This suggests that multiple pathways contribute to the transmission of ruminant fecal contamination in this context, which would have been missed if data were analyzed using standard regression techniques.


2012 ◽  
Vol 10 (4) ◽  
pp. 565-578 ◽  
Author(s):  
Peter S. K. Knappett ◽  
Larry D. McKay ◽  
Alice Layton ◽  
Daniel E. Williams ◽  
Md. J. Alam ◽  
...  

Bangladesh is underlain by shallow aquifers in which millions of drinking water wells are emplaced without annular seals. Fecal contamination has been widely detected in private tubewells. To evaluate the impact of well construction on microbial water quality 35 private tubewells (11 with intact cement platforms, 19 without) and 17 monitoring wells (11 with the annulus sealed with cement, six unsealed) were monitored for culturable Escherichia coli over 18 months. Additionally, two ‘snapshot’ sampling events were performed on a subset of wells during late-dry and early-wet seasons, wherein the fecal indicator bacteria (FIB) E. coli, Bacteroidales and the pathogenicity genes eltA (enterotoxigenic E. coli; ETEC), ipaH (Shigella) and 40/41 hexon (adenovirus) were detected using quantitative polymerase chain reaction (qPCR). No difference in E. coli detection frequency was found between tubewells with and without platforms. Unsealed private wells, however, contained culturable E. coli more frequently and higher concentrations of FIB than sealed monitoring wells (p &lt; 0.05), suggestive of rapid downward flow along unsealed annuli. As a group the pathogens ETEC, Shigella and adenovirus were detected more frequently (10/22) during the wet season than the dry season (2/20). This suggests proper sealing of private tubewell annuli may lead to substantial improvements in microbial drinking water quality.


2018 ◽  
Vol 84 (6) ◽  
Author(s):  
Jennifer Weidhaas ◽  
Angela Anderson ◽  
Rubayat Jamal

ABSTRACT Fecal indicator bacteria (FIB) are the basis for water quality regulations and are considered proxies for waterborne pathogens when conducting human health risk assessments. The direct detection of pathogens in water and simultaneous identification of the source of fecal contamination are possible with microarrays, circumventing the drawbacks to FIB approaches. A multigene target microarray was used to assess the prevalence of waterborne pathogens in a fecally impaired mixed-use watershed. The results indicate that fecal coliforms have improved substantially in the watershed since its listing as a 303(d) impaired stream in 2002 and are now near United States recreational water criterion standards. However, waterborne pathogens are still prevalent in the watershed, as viruses (bocavirus, hepatitis E and A viruses, norovirus, and enterovirus G), bacteria ( Campylobacter spp., Clostridium spp., enterohemorrhagic and enterotoxigenic Escherichia coli , uropathogenic E. coli , Enterococcus faecalis , Helicobacter spp., Salmonella spp., and Vibrio spp.), and eukaryotes ( Acanthamoeba spp., Entamoeba histolytica , and Naegleria fowleri ) were detected. A comparison of the stream microbial ecology with that of sewage, cattle, and swine fecal samples revealed that human sources of fecal contamination dominate in the watershed. The methodology presented is applicable to a wide range of impaired streams for the identification of human health risk due to waterborne pathogens and for the identification of areas for remediation efforts. IMPORTANCE The direct detection of waterborne pathogens in water overcomes many of the limitations of the fecal indicator paradigm. Furthermore, the identification of the source of fecal impairment aids in identifying areas for remediation efforts. Multitarget gene microarrays are shown to simultaneously identify waterborne pathogens and aid in determining the sources of impairment, enabling further focused investigations. This study shows the use of this methodology in a historically impaired watershed in which total maximum daily load reductions have been successfully implemented to reduce risk. The results suggest that while the fecal indicators have been reduced more than 96% and are nearing recreational water criterion levels, pathogens are still detectable in the watershed. Microbial source tracking results show that additional remediation efforts are needed to reduce the impact of human sewage in the watershed.


Author(s):  
Alberto Previati ◽  
Giovanni B. Crosta

AbstractUrban areas are major contributors to the alteration of the local atmospheric and groundwater environment. The impact of such changes on the groundwater thermal regime is documented worldwide by elevated groundwater temperature in city centers with respect to the surrounding rural areas. This study investigates the subsurface urban heat island (SUHI) in the aquifers beneath the Milan city area in northern Italy, and assesses the natural and anthropogenic controls on groundwater temperatures within the urban area by analyzing groundwater head and temperature records acquired in the 2016–2020 period. This analysis demonstrates the occurrence of a SUHI with up to 3 °C intensity and reveals a correlation between the density of building/subsurface infrastructures and the mean annual groundwater temperature. Vertical heat fluxes to the aquifer are strongly related to the depth of the groundwater and the density of surface structures and infrastructures. The heat accumulation in the subsurface is reflected by a constant groundwater warming trend between +0.1 and + 0.4 °C/year that leads to a gain of 25 MJ/m2 of thermal energy per year in the shallow aquifer inside the SUHI area. Future monitoring of groundwater temperatures, combined with numerical modeling of coupled groundwater flow and heat transport, will be essential to reveal what this trend is controlled by and to make predictions on the lateral and vertical extent of the groundwater SUHI in the study area.


Sign in / Sign up

Export Citation Format

Share Document