scholarly journals Unsealed tubewells lead to increased fecal contamination of drinking water

2012 ◽  
Vol 10 (4) ◽  
pp. 565-578 ◽  
Author(s):  
Peter S. K. Knappett ◽  
Larry D. McKay ◽  
Alice Layton ◽  
Daniel E. Williams ◽  
Md. J. Alam ◽  
...  

Bangladesh is underlain by shallow aquifers in which millions of drinking water wells are emplaced without annular seals. Fecal contamination has been widely detected in private tubewells. To evaluate the impact of well construction on microbial water quality 35 private tubewells (11 with intact cement platforms, 19 without) and 17 monitoring wells (11 with the annulus sealed with cement, six unsealed) were monitored for culturable Escherichia coli over 18 months. Additionally, two ‘snapshot’ sampling events were performed on a subset of wells during late-dry and early-wet seasons, wherein the fecal indicator bacteria (FIB) E. coli, Bacteroidales and the pathogenicity genes eltA (enterotoxigenic E. coli; ETEC), ipaH (Shigella) and 40/41 hexon (adenovirus) were detected using quantitative polymerase chain reaction (qPCR). No difference in E. coli detection frequency was found between tubewells with and without platforms. Unsealed private wells, however, contained culturable E. coli more frequently and higher concentrations of FIB than sealed monitoring wells (p < 0.05), suggestive of rapid downward flow along unsealed annuli. As a group the pathogens ETEC, Shigella and adenovirus were detected more frequently (10/22) during the wet season than the dry season (2/20). This suggests proper sealing of private tubewell annuli may lead to substantial improvements in microbial drinking water quality.

2015 ◽  
Vol 54 (3) ◽  
pp. 194-203
Author(s):  
Eva Grilc ◽  
Ivanka Gale ◽  
Aleš Veršič ◽  
Tina Žagar ◽  
Maja Sočan

Abstract Introduction. Even brief episodes of fecal contamination of drinking water can lead directly to illness in the consumers. In water-borne outbreaks, the connection between poor microbial water quality and disease can be quickly identified. The impact of non-compliant drinking water samples due to E. coli taken for regular monitoring on the incidence of notified acute gastrointestinal infections has not yet been studied. Methods. The objective of this study was to analyse the geographical distribution of notified acute gastrointestinal infections (AGI) in Slovenia in 2010, with hotspot identification. The second aim of the study was to correlate the fecal contamination of water supply system on the settlement level with the distribution of notified AGI cases. Spatial analysis using geo-information technology and other methods were used. Results. Hot spots with the highest proportion of notified AGI cases were mainly identified in areas with small supply zones. The risk for getting AGI was drinking water contaminated with E. coli from supply zones with 50-1000 users: RR was 1.25 and significantly greater than one (p-value less than 0.001). Conclusion. This study showed the correlation between the frequency of notified AGI cases and noncompliant results in drinking water monitoring.


2019 ◽  
Author(s):  
Amy J. Pickering ◽  
Jenna Swarthout ◽  
MaryAnne Mureithi ◽  
John Mboya ◽  
Benjamin F. Arnold ◽  
...  

AbstractCombined water, sanitation, and handwashing (WSH) interventions have the potential to reduce fecal pathogens along more transmission pathways than single interventions alone. We measured Escherichia coli levels in 3909 drinking water samples, 2691 child hand rinses, and 2422 toy ball rinses collected from households enrolled in a two-year cluster-randomized controlled trial evaluating single and combined WSH interventions. Water treatment alone reduced E. coli in drinking water, while a combined WSH intervention improved water quality by the same magnitude but did not affect levels of fecal indicator bacteria on child hands or toy balls. The failure of the WSH interventions to reduce E. coli along important child exposure pathways is consistent with the lack of a protective effect from the interventions on child diarrhea or child growth during the trial. Our results have important implications for WSH program design; the sanitation and handwashing interventions implemented in this trial should not be expected to reduce child exposure to fecal contamination in other similar settings.


2021 ◽  
Vol 99 (12) ◽  
pp. 1353-1359
Author(s):  
Angelika V. Zagainova ◽  
Galina M. Trukhina ◽  
Yury A. Rakhmanin ◽  
Tamara Z. Artemova ◽  
Marina A. Sukhina

Introduction. The increasing bacterial contamination of water bodies requires an increase in water quality control’s reliability to ensure epidemic safety against waterborne infections. Therefore, researchers in both Russia and Europe came to the conclusion that it is necessary to search for indicator microorganisms that can more accurately suggest the presence of pathogens. microorganisms in water than traditional indicators. The aim of the study was to justify the introduction of indicator indices of fecal contamination “generalized coliform bacteria” and Escherichia coli to assess the safety of drinking water Material and methods. The article provides an analysis of domestic and international regulatory documents and literary materials regulating the quality of drinking water in terms of sanitary and microbiological indicators and assessment criteria. The results of many years of experimental and field research carried out by research organizations and practical organizations of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare are presented. Results. On the territory of Russia, “general coliform bacteria,” is one of the indicator indices chosen according to the fermentation of lactose, determine the safety of drinking water. The water does not take into account pathogenic bacteria (Salmonella, Shigella) and a number of lactose-negative opportunistic bacteria, causative agents of intestinal infections. The study of microorganisms isolated from the feces of patients confirms the frequency of occurrence of lactose-negative microorganisms to varying from 20 to 100% of strains. With an annual trend towards a decrease in the percentage of non-standard drinking water samples in terms of microbiological indices, general intestinal infections (GII) of unknown etiology increase, i.e. risk of GII. If the quality of drinking water does not correspond to thermotolerant coliform bacteria (TCB), 95% of samples contain E. coli. Therefore, the determination of E. coli more reliably indicates the intake of fresh fecal contamination and provides efficiency in taking measures to eliminate an unfavorable situation than TCB. Conclusion. Reasons are given for the introduction of more reliable microbiological indicators of water safety control, such as - “generalized coliform bacteria” with the preservation of the abbreviation GCB, combining both lactose-positive and lactose-negative bacteria, determined by the sign of glucose fermentation, negative oxidase test and negative stain according to Gram and E. coli as an indicator of recent faecal contamination, which will allow the assessment of water quality for a wide range of bacteria of the order Enterobacterials, corresponding to the modern taxonomy of Enterobacteriaceae NCBI, will ensure harmonization with international requirements and the safety of drinking water for the population.


Author(s):  
Farhan Mohammad Khan ◽  
Rajiv Gupta

Escherichia coli or E. coli is a member of the fecal coliform group and is a more specific indicator of fecal contamination than other fecal coliform species, its presence indicate possibly presence of harmful bacteria which will cause diseases and it also suggests the extent as well as the nature of the contaminants. E. coli bacteria able to survive in water for 4 – 12 weeks and at present, it appears as an indicator to provide the accurate bacterial contamination of fecal matter in drinking water, because of the availability of simple, affordable, fast, sensitive and exact detection techniques. According to the laboratory experiment based techniques, 24 - 48 hours are required for the bacterial concentration to be reported. So, there is a necessity for continuous monitoring. Techniques for detection of many pathogenic bacterial strains are not yet available, sometimes days to weeks are required to get the results. To overcome the difficulties, expensive and time-consuming techniques are required to detect, count and identify the presence of specific bacterial strain. Public health relies on online monitoring of water quality that depends majorly on examination of fecal indicator bacteria, thus protection of health requires fecal pollution indicator so that it is not required to analyze drinking water to overcome the problems associated with waterborne diseases. This paper will brief the classification, sources, survival of E. coli bacteria and its correlation with basic water quality parameters in water sources.```


2020 ◽  
Vol 12 (9) ◽  
pp. 3768 ◽  
Author(s):  
Emily Bedell ◽  
Taylor Sharpe ◽  
Timothy Purvis ◽  
Joe Brown ◽  
Evan Thomas

Low-cost, field-deployable, near-time methods for assessing water quality are not available when and where waterborne infection risks are greatest. We describe the development and testing of a novel device for the measurement of tryptophan-like fluorescence (TLF), making use of recent advances in deep-ultraviolet light emitting diodes (UV-LEDs) and sensitive semiconductor photodiodes and photomultipliers. TLF is an emerging indicator of water quality that is associated with members of the coliform group of bacteria and therefore potential fecal contamination. Following the demonstration of close correlation between TLF and E. coli in model waters and proof of principle with sensitivity of 4 CFU/mL for E. coli, we further developed a two-LED flow-through configuration capable of detecting TLF levels corresponding to “high risk” fecal contamination levels (>10 CFU/100 mL). Findings to date suggest that this device represents a scalable solution for remote monitoring of drinking water supplies to identify high-risk drinking water in near-time. Such information can be immediately actionable to reduce risks.


Author(s):  
Wayan Budiarsa Suyasa ◽  
Sri Kunti Pancadewi G. A ◽  
Iryanti E. Suprihatin ◽  
Dwi Adi Suastuti G. A.

In order to maintain the environmental carrying capacity of coastal tourism, this research was conducted to determine the condition of river water environmental pollution in the Petitenget beach area and pollutant source activities. Determination of water quality is carried out by analyzing the water quality taken at several sampling points in the four rivers that lead to the Petitenget beach. Determined the pollution index value (IP) of the physical chemical and biological pollution parameters. The results showed that the four rivers that flow into the Petitenget Beach area had been contaminated with indications of pH, BOD, COD, ammonia, Coliform and E. coli which exceeded water quality category III class quality (PerGub Bali No 16 Year 2016). The four rivers are included in the criteria of severe contamination. The four rivers have experienced physical damage or structural changes that have very high discharge fluctuations both in quantity and quality. Slimy basic structure, smelly and slum aesthetic waters. While the indication of the impact of pollution is waste water which is directly discharged into the river from hotels, restaurants, homestays, commercial centers and settlements.


2021 ◽  
Vol 193 (8) ◽  
Author(s):  
Desmond Tichaona Mugadza ◽  
Sibusisiwe Isabel Nduku ◽  
Edlyn Gweme ◽  
Sherpherd Manhokwe ◽  
Patience Marume ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 86
Author(s):  
Regina Böger ◽  
Karl Rohn ◽  
Nicole Kemper ◽  
Jochen Schulz

Poor drinking water quality can affect pigs’ health and performance. The disinfection of water may enhance microbial water quality. In this study, bacteria and endotoxins in sodium hypochlorite-treated and -untreated water from one pig nursery were analyzed. Water samples were taken from incoming water and from compartments with treated and untreated water at the beginning and end of pipes and from nipples. The farm was visited 14 times to measure total bacteria counts and concentrations of Pseudomonas spp. and endotoxins. Additionally, the occurrence of coliform bacteria was analyzed. A mixed model analysis revealed significant reductions in total bacteria counts and Pseudomonas spp. in treated water at the beginning of pipes and at nipple drinkers. The differences between bacteria concentrations at the end of pipes had no clear trend. Endotoxin concentrations were approximately equal at the beginning of pipes and at nipple drinkers but were found to have differences at the end of pipes. The occurrence of coliform bacteria was significantly reduced in treated water. The application of sodium hypochlorite can significantly reduce bacteria in water pipes. Endotoxin concentrations were mostly unaffected by water treatment. Disinfection of the dead-end pipe sections failed, and thus these parts should be regarded as potential contamination sources.


2012 ◽  
Vol 63 (9) ◽  
pp. 788 ◽  
Author(s):  
N. E. Pettit ◽  
T. D. Jardine ◽  
S. K. Hamilton ◽  
V. Sinnamon ◽  
D. Valdez ◽  
...  

The present study indicates the critical role of hydrologic connectivity in floodplain waterholes in the wet–dry tropics of northern Australia. These waterbodies provide dry-season refugia for plants and animals, are a hotspot of productivity, and are a critical part in the subsistence economy of many remote Aboriginal communities. We examined seasonal changes in water quality and aquatic plant cover of floodplain waterholes, and related changes to variation of waterhole depth and visitation by livestock. The waterholes showed declining water quality through the dry season, which was exacerbated by more frequent cattle usage as conditions became progressively drier, which also increased turbidity and nutrient concentrations. Aquatic macrophyte biomass was highest in the early dry season, and declined as the dry season progressed. Remaining macrophytes were flushed out by the first wet-season flows, although they quickly re-establish later during the wet season. Waterholes of greater depth were more resistant to the effects of cattle disturbance, and seasonal flushing of the waterholes with wet-season flooding homogenised the water quality and increased plant cover of previously disparate waterholes. Therefore, maintaining high levels of connectivity between the river and its floodplain is vital for the persistence of these waterholes.


2011 ◽  
Vol 101 (3) ◽  
pp. 448-453 ◽  
Author(s):  
Joshua Graff Zivin ◽  
Matthew Neidell ◽  
Wolfram Schlenker

We examine the impact of poor water quality on avoidance behavior by estimating the change in bottled water purchases in response to drinking water violations. Using data from a national grocery chain matched with water quality violations, we find an increase in bottled water sales of 22 percent from violations due to microorganisms and 17 percent from violations due to elements and chemicals. Back-of-the envelope calculations yield costs of avoidance behavior at roughly $60 million for all nationwide violations in 2005, which likely reflects a significant understatement of the total willingness to pay to eliminate violations.


Sign in / Sign up

Export Citation Format

Share Document