Verification study of passive microwave snowfall products using ground-based radar network observations

Author(s):  
Mario Montopoli ◽  
Kamil Mroz ◽  
Giulia Panegrossi ◽  
Daniele Casella ◽  
Luca Baldini ◽  
...  

<p>Snowfall remote sensing  is becoming an increasingly popular topic within both the scientific community and operational services. Studies focused on snow retrievals are important because snow represents a reservoir of fresh water and its quantification is a crucial task to thoroughly understanding the hydrological cycle. In addition, snow-cover plays a key role in the climate system, modifying the global energy budget because of its high albedo. In addition, snowfalls often represent a hazard to several public services (e.g. transportations, energy providers) as well as properties (e.g. roof loading) but also an opportunity (e.g. for hydropower).</p><p>Passive microwave observations provided by currently operating spaceborne radiometers (e.g. Advanced Technology Microwave Sounder (ATMS), the Global Precipitation Measurement (GPM) Microwave Imager (GMI)) are a unique source of global information on the occurrence and the quantity of snowfall. However, because of the weaker and more complex signatures of snow at microwave frequencies [1] compared to those from rainfall, the retrieval schemes used by such instruments are still not fully optimised for snowfall detection and estimation, and subject to large errors. The ESA-funded RAINCAST project aims, among other tasks, at the verification of passive microwave snowfall products with the goal of fostering and defining new retrieval algorithms and mission concepts specifically optimised for snowfall quantification.</p><p>In this study we show a comparative analysis between passive microwave snowfall rate estimates and high quality ground-based radar snowfall measurements to quantify the actual strengths and limitations in state-of-the-art passive microwave snowfall products. In particular, the performance of the Goddard profiling algorithm version 5A (GPROF V5A) and of a recently developed snowfall retrieval algorithm for GMI named SLALOM [2, 3] are investigated. The differences between GPROF and SLALOM are explored in relation to the environmental conditions (including the presence of supercooled droplets aloft that tend to mask the typical snowfall signature) where the snowfall retrievals are likely less accurate. In addition, ATMS snowfall products are analysed as well for selected case studies to evidence the potential and limitations of the different snowfall products in relation to the algorithm’s design (e.g., GPROF vs. SLALOM) and sensor characteristics (GMI and ATMS). Then quantitative assessments for all products are discussed by exploiting one year of ground reference radar network data over Northern U.S. and Canada provided by the Multi-Radar/Multi-sensor System (MRMS) product, available at 1x1 km horizontal regularresolution and 2 min time sampling, and providing gauge adjusted surface precipitation rate together with the indication of its phase.</p><p>Our analysis confirms results from recent work on the same topic [e.g., 4], although a long term large scale analysis that quantify passive microwave retrieval is not found in the past literature. </p><p>This work is particularly relevant not only for the quantification of the limitations of the current snowfall retrieval algorithms, but also to give recommendations for algorithm development for upcoming satellite missions (e.g. EPS-SG MWS, MWI/ICI), and for future satellite mission concepts.</p><p><strong>REFERENCES</strong></p><p>[1] Liu, G. et al, 2008. doi:  10.1029/2007JD009766.</p><p>[2] Rysman, J.-F. et al., 2018. doi: 10.3390/rs10081278</p><p>[3] Rysman J.-F., et al., 2019. doi:10.1029/2019GL084576,</p><p>[4] Von Lerber, et al. doi: /10.1175/JAMC-D-17-0176.1</p><div> <div> <div> </div> </div> </div>

2017 ◽  
Vol 18 (11) ◽  
pp. 3051-3070 ◽  
Author(s):  
Clément Guilloteau ◽  
Efi Foufoula-Georgiou ◽  
Christian D. Kummerow

Abstract The constellation of spaceborne passive microwave (MW) sensors, coordinated under the framework of the Precipitation Measurement Missions international agreement, continuously produces observations of clouds and precipitation all over the globe. The Goddard profiling algorithm (GPROF) is designed to infer the instantaneous surface precipitation rate from the measured MW radiances. The last version of the algorithm (GPROF-2014)—the product of more than 20 years of algorithmic development, validation, and improvement—is currently used to estimate precipitation rates from the microwave imager GMI on board the GPM core satellite. The previous version of the algorithm (GPROF-2010) was used with the microwave imager TMI on board TRMM. In this paper, TMI-GPROF-2010 estimates and GMI-GPROF-2014 estimates are compared with coincident active measurements from the Precipitation Radar on board TRMM and the Dual-Frequency Precipitation Radar on board GPM, considered as reference products. The objective is to assess the improvement of the GPM-era microwave estimates relative to the TRMM-era estimates and diagnose regions where continuous improvement is needed. The assessment is oriented toward estimating the “effective resolution” of the MW estimates, that is, the finest scale at which the retrieval is able to accurately reproduce the spatial variability of precipitation. A wavelet-based multiscale decomposition of the radar and passive microwave precipitation fields is used to formally define and assess the effective resolution. It is found that the GPM-era MW retrieval can resolve finer-scale spatial variability over oceans than the TRMM-era retrieval. Over land, significant challenges exist, and this analysis provides useful diagnostics and a benchmark against which future retrieval algorithm improvement can be assessed.


2017 ◽  
Vol 21 (6) ◽  
pp. 2685-2700 ◽  
Author(s):  
Zeinab Takbiri ◽  
Ardeshir M. Ebtehaj ◽  
Efi Foufoula-Georgiou

Abstract. We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1225
Author(s):  
Lanka Karthikeyan ◽  
Ming Pan ◽  
Dasika Nagesh Kumar ◽  
Eric F. Wood

Passive microwave sensors use a radiative transfer model (RTM) to retrieve soil moisture (SM) using brightness temperatures (TB) at low microwave frequencies. Vegetation optical depth (VOD) is a key input to the RTM. Retrieval algorithms can analytically invert the RTM using dual-polarized TB measurements to retrieve the VOD and SM concurrently. Algorithms in this regard typically use the τ-ω types of models, which consist of two third-order polynomial equations and, thus, can have multiple solutions. Through this work, we find that uncertainty occurs due to the structural indeterminacy that is inherent in all τ-ω types of models in passive microwave SM retrieval algorithms. In the process, a new analytical solution for concurrent VOD and SM retrieval is presented, along with two widely used existing analytical solutions. All three solutions are applied to a fixed framework of RTM to retrieve VOD and SM on a global scale, using X-band Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB data. Results indicate that, with structural uncertainty, there ensues a noticeable impact on the VOD and SM retrievals. In an era where the sensitivity of retrieval algorithms is still being researched, we believe the structural indeterminacy of RTM identified here would contribute to uncertainty in the soil moisture retrievals.


2019 ◽  
Vol 36 (12) ◽  
pp. 2471-2482 ◽  
Author(s):  
Jackson Tan ◽  
George J. Huffman ◽  
David T. Bolvin ◽  
Eric J. Nelkin

AbstractAs the U.S. Science Team’s globally gridded precipitation product from the NASA–JAXA Global Precipitation Measurement (GPM) mission, the Integrated Multi-Satellite Retrievals for GPM (IMERG) estimates the surface precipitation rates at 0.1° every half hour using spaceborne sensors for various scientific and societal applications. One key component of IMERG is the morphing algorithm, which uses motion vectors to perform quasi-Lagrangian interpolation to fill in gaps in the passive microwave precipitation field using motion vectors. Up to IMERG V05, the motion vectors were derived from the large-scale motions of infrared observations of cloud tops. This study details the changes introduced in IMERG V06 to derive motion vectors from large-scale motions of selected atmospheric variables in numerical models, which allow IMERG estimates to be extended from the 60°N–60°S latitude band to the entire globe. Evaluation against both instantaneous passive microwave retrievals and ground measurements demonstrates the general improvement in the precipitation field of the new approach. Most of the model variables tested exhibited similar performance, but total precipitable water vapor was chosen as the source of the motion vectors for IMERG V06 due to its competitive performance and global completeness. Continuing assessments will provide further insights into possible refinements of this revised morphing scheme in future versions of IMERG.


Author(s):  
Yalei You ◽  
S. Joseph Munchak ◽  
Christa Peters-Lidard ◽  
Sarah Ringerud

AbstractRainfall retrieval algorithms for passive microwave radiometers often exploits the brightness temperature depression due to ice scattering at high frequency channels (≥ 85 GHz) over land. This study presents an alternate method to estimate the daily rainfall amount using the emissivity temporal variation (i.e., Δe) under rain-free conditions at low frequency channels (19, 24 and 37 GHz). Emissivity is derived from 10 passive microwave radiometers, including the Global Precipitation Measurement (GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), three Special Sensor Microwave Imager/Sounder (SSMIS), the Advanced Technology Microwave Sounder (ATMS), and four Advanced Microwave Sounding Unit-A (AMSU-A). Four different satellite combination schemes are used to derive the Δe for daily rainfall estimates. They are all-10-satellites, 5-imagers, 6-satellites with very different equator crossing times, and GMI-only. Results show that Δe from all-10-satellites has the best performance with a correlation of 0.60 and RMSE of 6.52 mm, comparing with the integrated multi-satellite retrievals (IMERG) final run product. The 6-satellites scheme has comparable performance with all-10-satellites scheme. The 5-imagers scheme performs noticeably worse with a correlation of 0.49 and RMSE of 7.28 mm, while the GMI-only scheme performs the worst with a correlation of 0.25 and RMSE of 11.36 mm. The inferior performance from the 5-imagers and GMI-only schemes can be explained by the much longer revisit time, which cannot accurately capture the emissivity temporal variation.


2013 ◽  
Vol 30 (11) ◽  
pp. 2493-2508 ◽  
Author(s):  
Grant W. Petty ◽  
Ke Li

Abstract A new approach to passive microwave retrievals of precipitation is described that relies on an objective dimensional reduction procedure to filter, normalize, and decorrelate geophysical background noise while retaining the majority of radiometric information concerning precipitation. The dimensional reduction also sharply increases the effective density of any a priori database used in a Bayesian retrieval scheme. The method is applied to passive microwave data from the Tropical Rainfall Measuring Mission (TRMM), reducing the original nine channels to three “pseudochannels” that are relatively insensitive to most background variations occurring within each of seven surface classes (one ocean plus six land and coast) for which they are defined. These pseudochannels may be used in any retrieval algorithm, including the current standard Goddard profiling algorithm (GPROF), in place of the original channels. The same methods are also under development for the Global Precipitation Measurement (GPM) Core Observatory Microwave Imager (GMI). Starting with the pseudochannel definitions, a new Bayesian algorithm for retrieving the surface rain rate is described. The algorithm uses an a priori database populated with matchups between the TRMM precipitation radar (PR) and the TRMM Microwave Imager (TMI). The explicit goal of the algorithm is to retrieve the PR-derived best estimate of the surface rain rate in portions of the TMI swath not covered by the PR. A unique feature of the new algorithm is that it provides robust posterior Bayesian probabilities of pixel-averaged rain rate exceeding various thresholds. Validation and intercomparison of the new algorithm is the subject of a companion paper.


2016 ◽  
Vol 17 (5) ◽  
pp. 1601-1621 ◽  
Author(s):  
Yalei You ◽  
Nai-Yu Wang ◽  
Ralph Ferraro ◽  
Patrick Meyers

Abstract A prototype precipitation algorithm for the Advanced Technology Microwave Sounder (ATMS) was developed by using 3-yr coincident ground radar and ATMS observations over the continental United States (CONUS). Several major improvements to a previously published algorithm for the Special Sensor Microwave Imager/Sounder (SSMIS) include 1) considering the different footprint size of ATMS pixels, 2) calculating the uncertainty associated with the precipitation estimation, and 3) extending the algorithm to the 60°S–60°N region using only CONUS observations to construct the database. It is found that the retrieved and radar-observed rain rates agree well (e.g., correlation 0.66) and the one-standard-deviation error bar provides valuable retrieval uncertainty information. The geospatial pattern from the retrieved rain rate is largely consistent with that from radar observations. For the snowfall performance, the ATMS-retrieved results clearly capture the snowfall events over the Rocky Mountain region, while radar observations almost entirely miss the snowfall events over this region. Further, this algorithm is applied to the 60°S–60°N land region. The representative nature of rainfall over CONUS permitted the application of this algorithm to 60°S–60°N for rainfall retrieval, evidenced by the progress and retreat of the major rainbands. However, an artificially large snowfall rate is observed in several regions (e.g., Tibetan Plateau and Siberia) because of frequent false detection and overestimation caused by much colder brightness temperatures.


2008 ◽  
Vol 47 (3) ◽  
pp. 778-794 ◽  
Author(s):  
K. A. Hilburn ◽  
F. J. Wentz

Abstract The Unified Microwave Ocean Retrieval Algorithm (UMORA) simultaneously retrieves sea surface temperature, surface wind speed, columnar water vapor, columnar cloud water, and surface rain rate from a variety of passive microwave radiometers including the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). The rain component of UMORA explicitly parameterizes the three physical processes governing passive microwave rain retrievals: the beamfilling effect, cloud and rainwater partitioning, and effective rain layer thickness. Rain retrievals from the previous version of UMORA disagreed among different sensors and were too high in the tropics. These issues have been fixed with more realistic rain column heights and proper modeling of saturation and footprint-resolution effects in the beamfilling correction. The purpose of this paper is to describe the rain algorithm and its recent improvements and to compare UMORA retrievals with Goddard Profiling Algorithm (GPROF) and Global Precipitation Climatology Project (GPCP) rain rates. On average, TMI retrievals from UMORA agree well with GPROF; however, large differences become apparent when the instantaneous retrievals are compared on a pixel-to-pixel basis. The differences are due to fundamental algorithm differences. For example, UMORA generally retrieves higher total liquid water, but GPROF retrieves a higher surface rain rate for a given amount of total liquid water because of differences in microphysical assumptions. Comparison of UMORA SSM/I retrievals with GPCP shows similar spatial patterns, but GPCP has higher global averages because of greater amounts of precipitation in the extratropics. UMORA and GPCP have similar linear trends over the period 1988–2005 with similar spatial patterns.


Author(s):  
Z. Nikraftar ◽  
M. Hasanlou ◽  
M. Esmaeilzadeh

The Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSM/IS) are satellites that work in passive microwave range. The SSM/I has capability to measure geophysical parameters which these parameters are key to investigate the climate and hydrology condition in the world. In this research the SSMI passive microwave data is used to study the feasibility of monitoring snow depth during snowfall month from 2010 to 2015 using an algorithm in conjunction with ground depth measured at meteorological stations of the National Centre for Environmental Information (NCEI). The previous procedures for snow depth retrieval algorithms uses only one or two passive bands for modelling snow depth. This study enable us to use of a nonlinear multidimensional regression algorithm which incorporates all channels and their related weighting coefficients for each band. Higher value of these coefficients are indicator of the importance of each band in the regression model. All channels and their combination were used in support of the vector algorithm combined with genetic algorithm (GA) for feature selection to estimate snow depth. The results were compared with those algorithms developed by recent researchers and the results clearly shows the superiority of proposed method (R<sup>2</sup> = 0.82 and RMSE = 6.3 cm).


Sign in / Sign up

Export Citation Format

Share Document