Evolution of Turbulence in the Kelvin–Helmholtz Instability mediated by the Magnetopause and its Boundary Layer

Author(s):  
Francesca Di Mare ◽  
Luca Sorriso-Valvo ◽  
Alessandro Retino' ◽  
Francesco Malara ◽  
Hiroshi Hasegawa

<p>The turbulence at the interface between the solar wind and the Earth’s magnetosphere, mediated by the magnetopause and its boundary layer are investigated by using Geotail and THEMIS spacecraft data during ongoing Kelvin-Helmholtz instability (KHI). The efficient transfer of energy across scales for which the turbulence is responsible, achieves the connection between the macroscopic flow and the microscopic dissipation of this energy. This boundary layer is thought to be the result of the observed plasma transfer, driven by the development of the KHI, originating from the velocity shear between the solar wind and the almost static near-Earth plasma. A collection of 20 events spatially located on the tail-flank magnetopause, selected from previously studied by Hasegawa et al. 2006 and Lin et al. 2014, have been tested against standard diagnostics for intermittent turbulence. In light of the results obtained, we have investigated the behaviour of several parameters as a function of the progressive departure along the Geocentric Solar Magnetosphere coordinates, which roughly represent the direction in which we expect the KHI vortices to evolve towards fully developed turbulence. It appears that a fluctuating behaviour of the parameters exist, visible as a decreasing, quasi-periodic modulation with an associated periodicity, estimated to correspond to approximately 6.4 Earth Radii. Such observed wavelength is consistent with the estimated vortices roll-up wavelength reported in the literature for these events. If the turbulence is pre-existent, it is possible that the KHI modulates its properties along the magnetosheath, as we observed. On the other hand, if we assume that the KHI has been initiated near the magnetospheric nose and develops along the flanks, then the different intervals we study may be sampling the plasma at different stages of evolution of the KH-generated turbulence, after the instability has injected energy in a cascading process as large-scale structures.</p>

2004 ◽  
Vol 22 (1) ◽  
pp. 183-212 ◽  
Author(s):  
S. Savin ◽  
L. Zelenyi ◽  
S. Romanov ◽  
I. Sandahl ◽  
J. Pickett ◽  
...  

Abstract. We advance the achievements of Interball-1 and other contemporary missions in exploration of the magnetosheath-cusp interface. Extensive discussion of published results is accompanied by presentation of new data from a case study and a comparison of those data within the broader context of three-year magnetopause (MP) crossings by Interball-1. Multi-spacecraft boundary layer studies reveal that in ∼80% of the cases the interaction of the magnetosheath (MSH) flow with the high latitude MP produces a layer containing strong nonlinear turbulence, called the turbulent boundary layer (TBL). The TBL contains wave trains with flows at approximately the Alfvén speed along field lines and "diamagnetic bubbles" with small magnetic fields inside. A comparison of the multi-point measurements obtained on 29 May 1996 with a global MHD model indicates that three types of populating processes should be operative: large-scale (∼few RE) anti-parallel merging at sites remote from the cusp; medium-scale (few thousandkm) local TBL-merging of fields that are anti-parallel on average; small-scale (few hundredkm) bursty reconnection of fluctuating magnetic fields, representing a continuous mechanism for MSH plasma inflow into the magnetosphere, which could dominate in quasi-steady cases. The lowest frequency (∼1–2mHz) TBL fluctuations are traced throughout the magnetosheath from the post-bow shock region up to the inner magnetopause border. The resonance of these fluctuations with dayside flux tubes might provide an effective correlative link for the entire dayside region of the solar wind interaction with the magnetopause and cusp ionosphere. The TBL disturbances are characterized by kinked, double-sloped wave power spectra and, most probably, three-wave cascading. Both elliptical polarization and nearly Alfvénic phase velocities with characteristic dispersion indicate the kinetic Alfvénic nature of the TBL waves. The three-wave phase coupling could effectively support the self-organization of the TBL plasma by means of coherent resonant-like structures. The estimated characteristic scale of the "resonator" is of the order of the TBL dimension over the cusps. Inverse cascades of kinetic Alfvén waves are proposed for forming the larger scale "organizing" structures, which in turn synchronize all nonlinear cascades within the TBL in a self-consistent manner. This infers a qualitative difference from the traditional approach, wherein the MSH/cusp interaction is regarded as a linear superposition of magnetospheric responses on the solar wind or MSH disturbances. Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers) – Space plasma physics (turbulence; nonlinear phenomena)


2019 ◽  
Vol 490 (2) ◽  
pp. 1879-1893
Author(s):  
Tiago F P Gomes ◽  
Erico L Rempel ◽  
Fernando M Ramos ◽  
Suzana S A Silva ◽  
Pablo R Muñoz

ABSTRACT This article provides observational evidence for the direct relation between current sheets, multifractality and fully developed turbulence in the solar wind. In order to study the role of current sheets in extreme-value statistics in the solar wind, the use of magnetic volatility is proposed. The statistical fits of extreme events are based on the peaks-over-threshold (POT) modelling of Cluster 1 magnetic field data. The results reveal that current sheets are the main factor responsible for the behaviour of the tail of the magnetic volatility distributions. In the presence of current sheets, the distributions display a positive shape parameter, which means that the distribution is unbounded in the right tail. Thus the appearance of larger current sheets is to be expected and magnetic reconnection events are more likely to occur. The volatility analysis confirms that current sheets are responsible for the −5/3 Kolmogorov power spectra and the increase in multifractality and non-Gaussianity in solar wind statistics. In the absence of current sheets, the power spectra display a −3/2 Iroshnikov–Kraichnan law. The implications of these findings for the understanding of intermittent turbulence in the solar wind are discussed.


1990 ◽  
Vol 211 ◽  
pp. 285-307 ◽  
Author(s):  
Emerick M. Fernando ◽  
Alexander J. Smits

This investigation describes the effects of an adverse pressure gradient on a flat plate supersonic turbulent boundary layer (Mf ≈ 2.9, βx ≈ 5.8, Reθ, ref ≈ 75600). Single normal hot wires and crossed wires were used to study the Reynolds stress behaviour, and the features of the large-scale structures in the boundary layer were investigated by measuring space–time correlations in the normal and spanwise directions. Both the mean flow and the turbulence were strongly affected by the pressure gradient. However, the turbulent stress ratios showed much less variation than the stresses, and the essential nature of the large-scale structures was unaffected by the pressure gradient. The wall pressure distribution in the current experiment was designed to match the pressure distribution on a previously studied curved-wall model where streamline curvature acted in combination with bulk compression. The addition of streamline curvature affects the turbulence strongly, although its influence on the mean velocity field is less pronounced and the modifications to the skin-friction distribution seem to follow the empirical correlations developed by Bradshaw (1974) reasonably well.


2008 ◽  
Vol 26 (6) ◽  
pp. 1559-1566 ◽  
Author(s):  
M. G. G. T. Taylor ◽  
B. Lavraud

Abstract. We report Double Star spacecraft observations of the dusk-flank magnetopause and its boundary layer under predominantly northward interplanetary magnetic field (IMF). Under such conditions the flank low-latitude boundary layers (LLBL) of the magnetosphere are known to broaden. The primary candidate processes associated with the transport of solar wind plasma into the LLBL are: (1) local diffusive plasma transport associated with the Kelvin-Helmholtz instability (KHI), (2) local plasma penetration owing to magnetic reconnection in the vicinity of the KHI-driven vortices, and (3) via a pre-existing boundary layer formed through double high-latitude reconnection on the dayside. Previous studies have shown that a cold population of solar wind origin is typically mixed with a hot population of magnetospheric origin in the LLBL. The present observations show the coexistence of three distinct ion populations in the dusk LLBL, during an interval when the magnetopause is unstable to the KHI: (1) a typical hot magnetospheric population, (2) a cold population that shows parallel temperature anisotropy, and (3) a distinct third cold population that shows perpendicular temperature anisotropy. Although no unambiguous conclusion may be drawn from this single event, we discuss the possible mechanisms at work and the origin of each population by envisaging three likely sources: hot magnetospheric plasma sheet, cold magnetosheath of solar wind origin, and cold plasma of ionospheric origin.


1999 ◽  
Vol 121 (1) ◽  
pp. 152-159 ◽  
Author(s):  
P. K. Panigrahi ◽  
S. Acharya

This paper provides detailed measurements of the flow in a ribbed coolant passage, and attempts to delineate the important mechanisms that contribute to the production of turbulent shear stress and the normal stresses. It is shown that the separated flow behind the rib is dictated by large-scale structures, and that the dynamics of the large-scale structures, associated with sweep, ejection, and inward and outward interactions, all play an important role in the production of the turbulent shear stress. Unlike the turbulent boundary layer, in a separated shear flow past the rib, the inward and outward interaction terms are both important, accounting for a negative stress production that is nearly half of the positive stress produced by the ejection and sweep mechanisms. It is further shown that the shear layer wake persists well past the re-attachment location of the shear layer, implying that the flow between ribbed passages never recovers to that of a turbulent boundary layer. Therefore, even past re-attachment, the use of statistical turbulence models that ignore coherent structure dynamics is inappropriate.


2002 ◽  
Vol 20 (6) ◽  
pp. 757-769 ◽  
Author(s):  
R. Smets ◽  
D. Delcourt ◽  
G. Chanteur ◽  
T. E. Moore

Abstract. Due to the velocity shear imposed by the solar wind flowing around the magnetosphere, the magnetopause flanks are preferred regions for the development of a Kelvin-Helmholtz instability. Since its efficiency for momentum transfer across the magnetopause has already been established, we investigate its efficiency for mass transfer. Using nonresistive magnetohydrodynamic simulations to describe the magnetic field shape in the instability region, we use test-particle calculations to analyse particle dynamics. We show that the magnetopause thickness and the instability wave-length are too large to lead to nonadiabatic motion of thermal electrons from the magnetosphere. On the other hand, the large mass of H+, He+ and O+ ions leads to such nonadiabatic motion and we thus propose the Kelvin-Helmholtz instability as a mechanism for either magnetospheric ion leakage into the magnetosheath or solar wind ion entry in the magnetosphere. Test-particle calculations are performed in a dimensionless way to discuss the case of each type of ion. The crossing rate is of the order of 10%. This rate is anti-correlated with shear velocity and instability wavelength. It increases with the magnetic shear. The crossing regions at the magnetopause are narrow and localized in the vicinity of the instability wave front. As a Kelvin-Helmholtz instability allows for mass transfer through the magnetopause without any resistivity, we propose it as an alternate process to reconnection for mass transfer through magnetic boundaries. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; MHD waves and instabilities) – Space plasma physics (numerical simulation studies)


Sign in / Sign up

Export Citation Format

Share Document