Microplastics in a UK Landfill: Developing Methods and Assessing Concentrations in Leachate, Hydrogeology, and Release to the Environment

Author(s):  
Max Waddell ◽  
Nathalie Grassineau ◽  
James Brakeley ◽  
Kevin Clemitshaw

<p>Inadequate management of plastic waste has resulted in its ubiquity within the environment, and presents a risk to living organisms. Harm caused by large plastics is well documented, but progressive understanding of microplastics (< 5mm) reveals an ever more unsettling issue. Microplastics contamination is considered an emerging global multidisciplinary issue that would be aided by further research on sources, distribution, abundance, and transport mechanisms. Landfills are a suspected source of such, but research at these sites is insufficient. Although the risks surrounding microplastics are still inconclusive, there is concern over their accumulation in organisms, leaching constituents, and hydrophobic nature. Studying microplastics in the environment, let alone landfill, is challenging as standard and accepted methodologies are presently non-existent.</p><p>Here, microplastics (1mm to 25µm) were evaluated at one particular and long-running UK landfill after first developing a simple, replicable, efficient, and cost effective sampling and analysis approach. Concentrations and types of microplastics were quantified in raw leachate, treated leachate, waste water, groundwater, and surface water, to characterise abundance, distribution, and released loads to the environment. Samples were filtered in-situ, with subsequent purification at the laboratory by Fenton’s reagent. Analysis relied heavily on microscopic sorting and counting, but use of Scanning Electron Microscopy – Energy Dispersive X-Ray Spectroscopy enabled instrumental interrogation of particles suspected to be plastic. Many factors investigated here appear novel to the literature, and comprehensively explore: temporal variation of microplastics in raw leachate across different landfill phases and waste ages; their abundance in local groundwater, and surface water discharge; microplastics distribution within a leachate treatment plant; and their subsequent release to the environment from a waste water treatment facility. The results build upon the small collection of existing work, but also offer new insights into microplastics’ occurrence in, around, and released from a landfill site.</p><p>In total, 62 samples were taken, and particles considered microplastics (MP) were most abundant in groundwater, followed by raw leachate > waste water > treated leachate > surface water. Average concentration in groundwater was 105.1±104.3 MP L<sup>-1</sup>, raw leachate 3.3±1.7 MP L<sup>-1</sup>, and waste water was 1.8±0.73 MP L<sup>-1</sup>. Consistent with other research, fibres were most dominant, but blank samples highlight the great potential for secondary contamination. Imaging of suspect particles revealed the extreme nature and conditions of landfill sites in their generation of microplastics. Analogous to waste water treatment, leachate treatment is shown to be reducing microplastics in the discharge by 58.1%, and it is expected that microplastics are retained in the treatment plant sludge. Daily loads from leachate treatment were 142,558±67,744 MP day<sup>-1</sup>, but from waste water this was approximately 45.2±18.3 million MP day<sup>-1</sup>. Ultimately, the landfill is not a final sink of microplastics but a source, for those >25 µm, to the environment: yet, it is unlikely to be a significant one. Results highlighted the need for reduction strategies at waste water treatment plants and in the site’s groundwater boreholes, as well as further investigation to determine the source of abundant fibres in the surface water.</p>

2011 ◽  
Vol 65 (6) ◽  
Author(s):  
Ján Derco ◽  
Lenka Černochová ◽  
Ľubomír Krcho ◽  
Antonio Lalai

AbstractActivated Sludge Model No. 1 (ASM1) was used to model the biological stage of an actual waste water treatment plant (WWTP). Some possibilities for the utilisation of simulation programs for WWTP operation are presented. Simulation calculations were performed taking the conditions of WWTP in Nové Zámky, the Slovak Republic, into consideration, where measurements of the diurnal variations in waste water flow and composition at the inlet and outlet were carried out. A calibrated model predicting the influence of changes in the waste water composition and the operational parameters on the effluent waste water quality and related operational costs is available. Values of the operational parameters (solids retention time, internal recirculation flow, dissolved oxygen concentration) for effective operation (effluent concentration values, oxygen consumption, charges, i.e. charges for waste water discharge into the recipient water body) of the WWTP were obtained by simulations. The presented results are for illustration purposes only and are not intended as instructions for the operation of a waste water treatment plant. They correspond to the calibrated mathematical model ASM 1 based on the results of experimental measurements and operational data, as well as on the technical and monitoring level of the WWTP.


1998 ◽  
Vol 37 (9) ◽  
pp. 9-16 ◽  
Author(s):  
Björn Rosén ◽  
Stig Morling

Most of the future works in water and waste water treatment systems will involve the upgrading of existing facilities, for better performance and/or higher capacity. For the efficient implementation of any project, an upgrading strategy should be used, based on careful studies of the local conditions and the defined objectives to be reached. The paper presents a systematic approach to upgrading with emphasis on treatment plant extension, without investing in large volumes, by more efficient use of existing facilities, illustrated by some cases. The importance of real competition in obtaining a cost-effective implementation is stressed.


2019 ◽  
pp. 347-352
Author(s):  
Lina Gelaziene

Around 6 million tons of non- hazardous waste and some 1 30-1 70 000 tons of hazardous waste is generated in Lithuania every year. Most of non-hazardous wastes are organic (2. 1 millions tons) or domestic (1.7 million ton). Since no general waste incineration is used in Lithuania, the overall used method of waste disposal is landfilling. Most of the landfills are not designed or located properly. They pose a threat for both surface and groundwater in Lithuania. The Lithuanian government has made environmental protection a priority concern in recent years. Bilateral and multilateral donors have made funding available for environmental projects. Until 1998 no landfill in Lithuania had a landfill leachate treatment plant. Leachate was kept in the special storage places in the landfill, or collected and recirculated. In Vilnius, the capital of Lithuania, part of the landfill leachate is taken to the city's waste water treatment plant and part of it is recirculated. Competition for the landfill leachate plant was announced and hopefully in the near future Vilnius will have a real project for the landfill leachate treatment. Recirculation was carried out in Kaunas Lapes landfill too till the leachate treatment plant was built. Leachate is collected and kept in the ditches in the other three biggest cities of Lithuania - Klaipeda, Siauliai and Panevezys. Klaipeda, as all other cities, is looking for a cost effective solution for the leachate treatment and Panevezys is thinking to clean the leachate in the city's waste water treatment plant. Biological leachate treatment is the idea of Siauliai municipality.


2019 ◽  
pp. 239-242
Author(s):  
Harri Terase ◽  
Juri Haller

HistoryLegislationTechnical datasNitrogen removing problemsTartu landfill leachate treatment possibilities


1991 ◽  
Vol 24 (10) ◽  
pp. 161-170 ◽  
Author(s):  
M. D. Sinke

Until a century ago, The Hague's waste water was discharged directly into the city's canals. However, the obnoxious smell and resultant pollution of local waters and beaches then necessitated the implementation of a policy of collecting and transferring waste water by means of a system of sewers. By 1937, it was being discharged, via a 400 metre-long sea outfall, directly into the North Sea. By 1967, however, the increasing volume of waste water being generated by The Hague and the surrounding conurbations called for the construction of a primary sedimentation plant. This had two sea outfalls, one 2.5 km long and the other 10 km long, the former for discharging pre-settled waste water and the latter for discharging sludge directly into the North Sea. This “separation plant” was enlarged during the period 1986-1990. On account of the little available area - only 4.1 ha - the plant had to be enlarged in two stages by constructing a biological treatment section and a sludge treatment section with a capacity of 1,700,000 p.e. (at 136 gr O2/p.e./day). In order to gain additional space, a number of special measures were introduced, including aerating gas containing 90% oxygen and stacked final clarifiers. Following completion of the sludge treatment section, it has become possible, since 1st May 1990, to dump digested sludge into a large reservoir (“The Slufter”), specially constructed to accommodate polluted mud dredged from the Rotterdam harbours and waterways. As a result of these measures, there has been a reduction of between 70% and 95% in North Sea pollution arising from the “Houtrust” waste water treatment plant. Related investment totalled Dfl. 200 million and annual operating and maintenance costs (including investment charges) will amount to Dfl. 30 million. Further measures will have to be taken in the future to reduce the discharge of phosphorus and nitrogen. So this enlargement is not the end. There will be continued extension of the purification operations of the “Houtrust” waste water treatment plant.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 225-232
Author(s):  
C. F. Seyfried ◽  
P. Hartwig

This is a report on the design and operating results of two waste water treatment plants which make use of biological nitrogen and phosphate elimination. Both plants are characterized by load situations that are unfavourable for biological P elimination. The influent of the HILDESHEIM WASTE WATER TREATMENT PLANT contains nitrates and little BOD5. Use of the ISAH process ensures the optimum exploitation of the easily degradable substrate for the redissolution of phosphates. Over 70 % phosphate elimination and effluent concentrations of 1.3 mg PO4-P/I have been achieved. Due to severe seasonal fluctuations in loading the activated sludge plant of the HUSUM WASTE WATER TREATMENT PLANT has to be operated in the stabilization range (F/M ≤ 0.05 kg/(kg·d)) in order not to infringe the required effluent values of 3.9 mg NH4-N/l (2-h-average). The production of surplus sludge is at times too small to allow biological phosphate elimination to be effected in the main stream process. The CISAH (Combined ISAH) process is a combination of the fullstream with the side stream process. It is used in order to achieve the optimum exploitation of biological phosphate elimination by the precipitation of a stripped side stream with a high phosphate content when necessary.


1996 ◽  
Vol 33 (12) ◽  
pp. 251-254
Author(s):  
Karl Arno Bäumer ◽  
Angela Baumann

The Institute for Water and Waste Management (ISA) at the Aachen University of Technology (RWTH) verified, through semi-technical analysis, the efficiency of the planned upgrade of the Kleve-Salmorth waste water treatment plant. Additionally the allowable biological phosphorus removal limit and the scheduled simultaneous precipitation were also ascertained.


Sign in / Sign up

Export Citation Format

Share Document