Mixed-Mode Seismic Slip and Aseismic Creep on a Highly Active Low-Angle Normal Fault System in Papua New Guinea

Author(s):  
James Biemiller ◽  
Laura Wallace ◽  
Luc Lavier

<p>Whether low-angle normal faults (LANFs; dip < 30°) slip in large earthquakes or creep aseismically is a longstanding problem in fault mechanics. Although abundant in the geologic record, active examples of these enigmatic ‘misoriented’ structures are rare and extension rates across them are typically less than a few mm/yr. As such, geodetic and seismological observations of LANFs are sparse and can be difficult to interpret in terms of earthquake cycles. With a long-term slip rate of ~1 cm/yr, the Mai’iu fault in Papua New Guinea may be the world’s most active LANF and thus offers an outstanding natural laboratory to evaluate seismic vs. aseismic behavior of LANFs. Here, we use new results from a campaign GPS network to determine the degree of locking vs. aseismic creep on the Mai’iu fault and evaluate these results in the context of geological evidence for mixed seismic and aseismic slip in exhumed Mai’iu fault rocks.</p><p>We derive velocities from GPS measurements with 3-4 km station spacing above the shallowest portions of the fault, which dips 21-25° at the surface. Dislocation modeling of these velocities is consistent with 6-8 mm/yr of horizontal extension, corresponding to ~1 cm/yr dip-slip rates on a 27-35°-dipping fault. Strain rates and vertical derivatives of horizontal stress rates derived from these velocities confirm localized extension across the fault. We compare and evaluate two interseismic locking models that fit the data best: one in which the fault deforms by shallow near-surface creep updip of a deeper zone of increased interseismic coupling which soles into a steadily creeping shear zone at depth, and one in which the fault creeps steadily downdip of a shallowly locked patch. These results combined with field and microstructural evidence from the exhumed fault rocks suggest that the fault slips by a mixture of brittle frictional (seismic slip, fracturing, and cataclastic creep) and viscous (stress-driven dissolution-precipitation creep, or pressure solution) processes. Using depth-constrained mechanical properties and stress conditions inferred from exhumed fault rocks, we model the time-dependent competition between frictional slip and viscous creep to assess where and how elastic strain accumulates along the Mai’iu fault, and whether the fault is capable of hosting or nucleating earthquakes.</p>

2020 ◽  
Author(s):  
Marcel Mizera ◽  
Timothy Little ◽  
Carolyn Boulton ◽  
David John Prior ◽  
Emma Jane Watson ◽  
...  

2020 ◽  
Author(s):  
Marcel Mizera ◽  
Timothy Little ◽  
Carolyn Boulton ◽  
James Biemiller ◽  
David Prior

<p>Rapid dip-slip (11.7±3.5 mm/yr) on the active Mai'iu low-angle normal fault in SE Papua New Guinea enabled the preservation of early formed microstructures in mid to shallow crustal rocks. The corrugated, convex-upward shaped fault scarp dips as low as 16°–20° near its trace close to sea level and forms a continuous landscape surface traceable for at least 28 km in the NNE slip-direction. Structurally, offset on the Mai'iu fault has formed a metamorphic core complex and has exhumed a metabasaltic footwall during 30–45 km of dip slip on a rolling-hinge style detachment fault. The exhumed crustal section records the spatiotemporal evolution of fault rock deformation mechanisms and the differential stresses that drive slip on this active low-angle normal fault.</p><p>The Mai'iu fault exposes a <3 m-thick fault core consisting of gouges and cataclasites. These deformed units overprint a structurally underlying carapace of metabasaltic mylonites that are locally >60 m-thick. Detailed microstructural, textural and geochemical data combined with chlorite-based geothermometry of these fault rocks reveal a variety of deformation processes operating within the Mai'iu fault zone. A strong crystallographic preferred orientation of non-plastically deformed actinolite in a pre-existing, fine-grained (6–33 µm) mafic assemblage indicates that mylonitic deformation was controlled by diffusion-accommodated grain-boundary sliding together with syn-tectonic chlorite precipitation at >270–370°C. At shallower crustal levels on the fault (T≈150–270°C), fluid-assisted mass transfer and metasomatic reactions created a foliated cataclasite fabric during inferred periods of aseismic creep. Pseudotachylites and ultracataclasites mutually cross-cut both the foliations and one another, recording repeated episodes of seismic slip. In these fault rocks, paleopiezometry based on calcite twinning yields peak differential stresses of ~140–185 MPa at inferred depths of 8–12 km. These differential stresses were high enough to drive continued slip on a ~35° dipping segment of the Mai'iu fault, and to cause new brittle yielding of strong mafic rocks in the exhuming footwall of that fault. In the uppermost crust (<8 km; T<150°C), where the Mai'iu fault dips shallowly and is most severely misoriented for slip, actively deforming fault rocks are clay-rich gouges containing abundant saponite, a frictionally weak mineral (µ<0.28).</p><p>In summary, these results combined with fault dislocation models of GPS velocities from campaign stations in this region suggest a combination of brittle frictional and viscous flow processes within the Mai'iu fault zone. Gouges of the Mai'iu fault have been strongly altered by fluids and are frictionally weak near the surface, where the fault is most strongly misoriented. At greater depths (8–12 km) the fault is stronger and slips both by aseismic creep and episodic earthquakes (a mixture of fast and slow slip) in response to locally high differential stresses.</p>


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
M. Mizera ◽  
T. Little ◽  
C. Boulton ◽  
D. Prior ◽  
E. Watson ◽  
...  

2021 ◽  
Vol 558 ◽  
pp. 116745
Author(s):  
Emma J. Watson ◽  
Gillian M. Turner ◽  
Timothy A. Little ◽  
Elisa J. Piispa

2020 ◽  
Vol 125 (10) ◽  
Author(s):  
James Biemiller ◽  
Carolyn Boulton ◽  
Laura Wallace ◽  
Susan Ellis ◽  
Timothy Little ◽  
...  

2020 ◽  
Author(s):  
Eric Kirby ◽  
Israporn (Grace) Sethanant ◽  
John Gosse ◽  
Eric McDonald ◽  
J Doug Walker

<p>The mechanical feasibility of co-seismic displacement along low-angle normal fault systems remains an outstanding problem in tectonics.  In the southwestern Basin and Range of North America, large magnitude extension during Miocene – Pliocene time was accommodated along a regionally extensive system of low-angle detachment faults.  Whether these faults remain active today and, if so, whether they rupture during large earthquakes are questions central to understanding the geodynamics of distributed lithospheric deformation and associated seismic hazard.  Here we evaluate the geometric and kinematic relationships of fault scarps developed in Pleistocene – Holocene alluvial and lacustrine deposits with low-angle detachment faults observed along the western flank of the Panamint Range, in eastern California.  We combine analysis of high-resolution topography generated from airborne LiDAR and photogrammetry with a detailed chronology of alluvial fan surfaces and a calibrated soil chronosequence to characterize the recent activity of the fault system.  The range-front fault system is coincident with a low-angle (15-20°), curviplanar detachment fault that is linked to strike-slip faults at its southern and northern ends.  Fanglomerate deposits in the hanging wall of the detachment are juxtaposed with brecciated bedrock in the footwall across a narrow fault surface marked by clay-rich gouge.  Isochron burial dating of the fanglomerate using the <sup>26</sup>Al and <sup>10</sup>Be requires displacement in the past ~800 ka.  The degree of soil development in younger alluvial deposits in direct fault contact with the footwall block suggest displacement along the main detachment in the past as ~80-100 ka.  The geometry of recent fault scarps in Holocene alluvium mimic range-scale variations in strike of the curviplanar detachment fault, suggesting that scarps merge with the detachment at depth.  Moreover, fault kinematics inferred from displaced debris-flow levees and from fault striae on the bedrock range front are consistent with slip on a low-angle detachment system beneath the valley.  Finally, paleoseismic results from a trench at the southern end of the fault system suggest 3-4 surface ruptures during past ~4-5 ka, the most recent of which (MRE) occurred ~330-485 cal yr BP.  Scarps related to the MRE can be traced for at least ~50 km northward along the range front and imply surface displacements of 2-4 meters during this event.  Thus, we conclude that ongoing dextral shear along the margin of the Basin and Range is, in part, accommodated by co-seismic slip along low-angle detachment faults in Panamint Valley.  Our results have important implications for the interaction of fault networks and seismic hazard in the region.</p>


Author(s):  
Ben Surpless ◽  
Sarah Thorne

Normal faults are commonly segmented along strike, with segments that localize strain and influence propagation of slip during earthquakes. Although the geometry of segments can be constrained by fault mapping, it is challenging to determine seismically relevant segments along a fault zone. Because slip histories, geometries, and strengths of linkages between normal fault segments fundamentally control the propagation of rupture during earthquakes, and differences in segment slip rates result in differential uplift of adjacent footwalls, we used along-strike changes in footwall morphology to detect fault segments and the relative strength of the mechanical links between them. We applied a new geomorphic analysis protocol to the Wassuk Range fault, Nevada, within the actively deforming Walker Lane. The protocol examines characteristics of footwall morphology, including range-crest continuity, bedrock-channel long profiles, catchment area variability, and footwall relief, to detect changes in strike-parallel footwall characteristics. Results revealed six domains with significant differences in morphology that we used to identify seismically relevant fault segments and segment boundaries. We integrated our results with previous studies to determine relative strength of links between the six segments, informing seismic hazard assessment. When combined with recent geodetic studies, our results have implications for the future evolution of the Walker Lane, suggesting changes in the accommodation of strain across the region. Our analysis demonstrates the power of this method to efficiently detect along-strike changes in footwall morphology related to fault behavior, permitting future researchers to perform reconnaissance assessment of normal fault segmentation worldwide.


1991 ◽  
Vol 31 (1) ◽  
pp. 333 ◽  
Author(s):  
B.A. Martin ◽  
SJ. Cawley

Two case studies from the northern margin of the Australian continental plate are presented to illustrate mapping and understanding seepage in an onshore and an offshore area. The first involves an integrated approach to the detection and analysis of onshore seeps in the Aure Thrust Belt of Papua New Guinea. The second study is an application of BP's proprietary Airborne Laser Fluorosensor (ALF) technology to the systematic detection and mapping of offshore oil seepage in the Arafura Sea, northern Australia.In the absence of well or outcrop source rock data, the source risking in the Aure Thrust Belt has been constrained using oil and gas seeps. Mapping the seeps required optimum use of the local peoples' observational prowess. Geochemical analyses of the seeps allowed the identification of an oil-prone source rock of probable Jurassic age. The data reveal that the seeping petroleum liquids are gas condensates in the subsurface, and provide information on the maturation history of the source and the nature of the reservoir/carrier beds, as well as differentiating the biogenic and thermogenic gas components. In this uplifted region, seepage is likely to be from accumulations only.To help reduce the exploration risk in offshore areas such as the Arafura Sea, BP have developed the ALF system which detects oil seepage at the sea surface. It does this by detecting its characteristic fluorescence, which is induced by an aircraft-mounted ultraviolet excimer laser.The ALF data over the western Arafura Sea indicate active oil seepage showing a distribution which is compatible with our current understanding of the subsurface Palaeozoic and Mesozoic source kitchens. The mapped seepage over the Goulburn Graben is most likely derived from the Palaeozoic to (?)Triassic section (with a possible contribution from other Mesozoic sources), and must be migrating through a largely unfaulted Mesozoic seal. Additionally, there is evidence for liquid petroleum seepage from the Mesozoic section in the Calder Graben via faults which cut through the regional seal along the Lynedoch Bank Fault System. In this region of the Arafura Sea, seepage is likely to derive from accumulations, mature source kitchens and secondary migration routes.


Sign in / Sign up

Export Citation Format

Share Document