Wind and wave effects on surface currents in the Mediterranean Sea

Author(s):  
Verónica Morales Márquez ◽  
Ismael Hernández Carrasco ◽  
Vincent Rossi ◽  
Alejandro Orfila

<p>The knowledge of Lagrangian motion is of a great importance due to their impact on the properties of transported material like the Essential Ocean Variables (phytoplankton, temperature, pCO2, etc), or other material like plastics debris, oil spill pollution, etc. In this study we analyze the influence of the wind and waves in the transport and mixing properties at the upper layers of the Mediterranean Sea. In this context, we propose a new approach for current velocity where we take into account the wind-wave interaction and the variability that it inserts into the current velocity through Ekman and Stokes components.</p><p><br>Surface currents, Ekman, Stokes, Lyapunov exponent</p>

2019 ◽  
Vol 11 (11) ◽  
pp. 1285 ◽  
Author(s):  
Daniele Ciani ◽  
Marie-Hélène Rio ◽  
Milena Menna ◽  
Rosalia Santoleri

We present a method for the remote retrieval of the sea surface currents in the Mediterranean Sea. Combining the altimeter-derived currents with sea-surface temperature information, we created daily, gap-free high resolution maps of sea surface currents for the period 2012–2016. The quality of the new multi-sensor currents has been assessed through comparisons to other surface-currents estimates, as the ones obtained from drifting buoys trajectories (at the basin scale), or HF-Radar platforms and ocean numerical model outputs in the Malta–Sicily Channel. The study yielded that our synergetic approach can improve the present-day derivation of the surface currents in the Mediterranean area up to 30% locally, with better performances for the the meridional component of the motion and in the western section of the basin. The proposed reconstruction method also showed satisfying performances in the retrieval of the ageostrophic circulation in the Sicily Channel. In this area, assuming the High Frequency Radar-derived currents as reference, the merged multi-sensor currents exhibited improvements with respect to the altimeter estimates and numerical model outputs, mainly due to their enhanced spatial and temporal resolution.


2021 ◽  
Vol 13 (12) ◽  
pp. 2389
Author(s):  
Daniele Ciani ◽  
Elodie Charles ◽  
Bruno Buongiorno Buongiorno Nardelli ◽  
Marie-Hélène Rio ◽  
Rosalia Santoleri

Measuring the ocean surface currents at high spatio-temporal resolutions is crucial for scientific and socio-economic applications. Since the early 1990s, the synoptic and global-scale monitoring of the ocean surface currents has been provided by constellations of radar altimeters. By construction, altimeter constellations provide only the geostrophic component of the marine surface currents. In addition, given the effective spatial-temporal resolution of the altimeter-derived products (O (100 km) and O (10 days), respectively), only the largest ocean mesoscale features can be resolved. In order to enhance the altimeter system capabilities, we propose a synergistic use of high resolution sea surface Chlorophyll observations (Chl) and altimeter-derived currents’ estimates. The study is focused on the Mediterranean Sea, where the most energetic signals are found at spatio-temporal scales up to 10 km and a few days. The proposed method allows for inferring the marine surface currents from the evolution of the Chl field, relying on altimeter-derived currents as a first-guess estimate. The feasibility of this approach is tested through an Observing System Simulation Experiment, starting from biogeochemical model outputs distributed by the European Copernicus Marine Service. Statistical analyses based on the 2017 daily data showed that our approach can improve the altimeter-derived currents accuracy up to 50%, also enhancing their effective spatial resolution up to 30 km. Moreover, the retrieved currents exhibit larger temporal variability than the altimeter estimates over annual to weekly timescales. Our method is mainly limited to areas/time periods where/when Chl gradients are larger and are modulated by the marine currents’ advection. Its application is thus more efficient when the surface Chl evolution is not dominated by the biological activity, mostly occurring in the mid-February to mid-March time window in the Mediterranean Sea. Preliminary tests on the method applicability to satellite-derived data are also presented and discussed.


2017 ◽  
Vol 9 (5) ◽  
pp. 422 ◽  
Author(s):  
Céline Heuzé ◽  
Gisela Carvajal ◽  
Leif Eriksson ◽  
Monika Soja-Woźniak

2015 ◽  
Vol 116 (1) ◽  
pp. 69-74 ◽  
Author(s):  
L Pérez ◽  
ML Abarca ◽  
F Latif-Eugenín ◽  
R Beaz-Hidalgo ◽  
MJ Figueras ◽  
...  

2008 ◽  
Vol 34 (4) ◽  
pp. 514-515 ◽  
Author(s):  
Giovanni Di Guardo

Sign in / Sign up

Export Citation Format

Share Document