Global water scarcity reduction requires water quality solutions

Author(s):  
Michelle T.H. van Vliet ◽  
Edward R. Jones ◽  
Martina Flörke ◽  
Wietse H.P. Franssen ◽  
Naota Hanasaki ◽  
...  

<p>Water scarcity threatens people in various regions, and has predominantly been studied from a water quantity perspective. However<strong>, </strong>the provision of water for human uses and environmental health is dependent on both sufficient water availability but also appropriate water quality for the intended use.</p><p>Our study presents the first estimates of global water scarcity driven by both water quantity and water quality issues and including impacts of desalination and treated waste-water reuse. We have developed a new water scarcity framework combining model simulations of multiple global hydrological models and global surface water quality models (water temperature, salinity, organic pollution, nutrients) and spatially-explicit datasets of desalination and treated wastewater reuse capacities globally.</p><p>Our results show that 40% of the world’s population currently lives in regions with severe water scarcity, which is driven by a combination of water quantity and quality issues. Impacts of water quality are in particular high in river basins in eastern China. Here, excessive water withdrawals and polluted return flows degrade water quality, exacerbating water scarcity. Our results show that expanding desalination and treated wastewater reuse capacities can strongly reduce water scarcity in most river basins, although the side-effects (e.g. brine production, high energy demands and costs) must be considered. We conclude that effective water scarcity reduction requires that we expand our focus from conventional measures, which mainly focus on improving water supply for sectoral uses, to solutions that also promote water quality improvements.</p><p><strong> </strong></p><p><strong> </strong></p>

2014 ◽  
Vol 53 (12) ◽  
pp. 3272-3282 ◽  
Author(s):  
P.-Μ. Stathatou ◽  
F.-K. Gad ◽  
E. Kampragou ◽  
H. Grigoropoulou ◽  
D. Assimacopoulos

2017 ◽  
Vol 60 (5) ◽  
pp. 1563-1574 ◽  
Author(s):  
Anne E. Dare ◽  
Rabi H. Mohtar ◽  
Chad T. Jafvert ◽  
Basem Shomar ◽  
Bernard Engel ◽  
...  

Abstract. Harsh environment, severe aridity, and climate change create chronic water shortages in the Middle East. Technical challenges, socio-economic factors, and competing uses of water have escalated the difficulties in water planning at national and institutional levels. This research identifies opportunities and challenges associated with wastewater treatment systems and the potential for wastewater reuse in the West Bank, Tunisia, and Qatar through the following objectives: (1) identify the factors associated with successful and unsuccessful reuse schemes, (2) compare treated wastewater quality with end use application of treated wastewater, and (3) identify the governance and social challenges preventing the use of treated wastewater, specifically in agricultural applications. Water quality analyses and consultations with farmers, local stakeholders, and water and agriculture experts were conducted. Opportunities and challenges for treated wastewater reuse in agriculture are identified as the proximity of the treatment facility to agricultural areas, water quality, and motivation of farmers. With proper maintenance and appropriate monitoring, the modest (natural) treatment facilities in the West Bank and secondary treatment technologies in Tunisia are capable of producing effluent safe for use in production of certain agricultural products; however, in Qatar, despite massive investments in producing high-quality treated wastewater using advanced treatment technologies, there is little demand. Water policies, laws and acts, and action plans are urgently needed to be coupled and integrated for implementation. Keywords: Arid lands, Food security, MENA, Wastewater treatment, Water reuse.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 43-50 ◽  
Author(s):  
Marcelo Juanico ◽  
Eran Friedler

Most of the water has been captured in the rivers of Israel and they have turned into dry river-beds which deliver only sporadic winter floods. In a semi-arid country where literally every drop of water is used, reclaimed wastewater is the most feasible water source for river recovery. Two topics are addressed in this paper: water quality management in rivers where most of the flowing water is treated wastewater, and the allocations of reclaimed wastewater required for the recovery of rivers and streams. Water quality management must consider that the main source of water to the river has a pollution loading which reduces its capability to absorb other pollution impacts. The allocation of treated wastewater for the revival of rivers may not affect negatively the water balance of the region; it may eventually improve it. An upstream bruto allocation of 122 MCM/year of wastewater for the recovery of 14 rivers in Israel may favor downstream reuse of this wastewater, resulting in a small neto allocation and in an increase of the water resources available to the country. The discharge of effluents upstream to revive the river followed by their re-capture downstream for irrigation, implies a further stage in the intensification of water reuse.


2011 ◽  
Vol 695 ◽  
pp. 626-629 ◽  
Author(s):  
Jung Soo Mun ◽  
Sang Ho Lee ◽  
Jung Hun Lee ◽  
Jeong Yul Suh ◽  
Ree Ho Kim

Urban areas consume huge amounts of water and produce much wastewater, which deteriorate the aquatic environment and exhaust the country’s freshwater resources. Water reuse from sewage and wastewater is recognized as a good option for securing water. There are several kinds of processes for improving the water quality. Nutrient removal is very important for water reuse, especially in water supply for outdoor use, to prevent water quality deterioration via eutrophication. Moreover, low cost and easy maintenance should be considered for nutrient removal. In this study, red mud and BauxsolTM, a mixed mineral powder made of physicochemically modified red mud residue generated by the Bayer process for alumina refineries, was used for the removal of nitrate and heavy metals in artificial solution, and of phosphate in final effluent, from a sewage treatment plant in Dae-gu, Republic of Korea. Nitrate removal by red mud showed little efficiency while heavy metal removal showed high efficiency. The concentrations of the total phosphate in the effluent and treated water were 1.51 and 0.14 mg/L, respectively, which represent about 90.7% removal. Before and after the treatment, the pH was maintained at a neutral range of 6.5-7.2. BauxsolTM also showed a high heavy metal removal capacity. Therefore, BauxsolTM in powder and pellet form can be applied individually or mixed with soil to improve water quality for water reuse.


2021 ◽  
Vol 13 (2) ◽  
pp. 237-254
Author(s):  
Edward R. Jones ◽  
Michelle T. H. van Vliet ◽  
Manzoor Qadir ◽  
Marc F. P. Bierkens

Abstract. Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation, while simultaneously promoting sustainable development and supporting the transition to a circular economy. This study aims to provide the first comprehensive and consistent global outlook on the state of domestic and manufacturing wastewater production, collection, treatment and reuse. We use a data-driven approach, collating, cross-examining and standardising country-level wastewater data from online data resources. Where unavailable, data are estimated using multiple linear regression. Country-level wastewater data are subsequently downscaled and validated at 5 arcmin (∼10 km) resolution. This study estimates global wastewater production at 359.4×109 m3 yr−1, of which 63 % (225.6×109 m3 yr−1) is collected and 52 % (188.1×109 m3 yr−1) is treated. By extension, we estimate that 48 % of global wastewater production is released to the environment untreated, which is substantially lower than previous estimates of ∼80 %. An estimated 40.7×109 m3 yr−1 of treated wastewater is intentionally reused. Substantial differences in per capita wastewater production, collection and treatment are observed across different geographic regions and by level of economic development. For example, just over 16 % of the global population in high-income countries produces 41 % of global wastewater. Treated-wastewater reuse is particularly substantial in the Middle East and North Africa (15 %) and western Europe (16 %), while comprising just 5.8 % and 5.7 % of the global population, respectively. Our database serves as a reference for understanding the global wastewater status and for identifying hotspots where untreated wastewater is released to the environment, which are found particularly in South and Southeast Asia. Importantly, our results also serve as a baseline for evaluating progress towards many policy goals that are both directly and indirectly connected to wastewater management. Our spatially explicit results available at 5 arcmin resolution are well suited for supporting more detailed hydrological analyses such as water quality modelling and large-scale water resource assessments and can be accessed at https://doi.org/10.1594/PANGAEA.918731 (Jones et al., 2020).


Sign in / Sign up

Export Citation Format

Share Document