Poroelastic effects of the damaged zone on seismic fracture reflectivity

Author(s):  
Edith Sotelo Gamboa ◽  
Santiago G. Solazzi ◽  
German J. Rubino ◽  
Nicolas D. Barbosa ◽  
Klaus Holliger

<p>The presence of fractures has a predominant influence on the hydraulic and mechanical behavior of rocks. These effects are particularly pronounced and relevant for otherwise largely impermeable and stiff formations. There is widespread evidence pointing to the ubiquitous presence of damaged zones surrounding fractures and faults. The enhanced permeability associated with these zones can promote fluid pressure diffusion in the vicinity of fractures when seismic waves travel through the corresponding subsurface volume. This process, together with the inherent mechanical weakness of damaged zones, is expected to affect the seismic reflectivity of fractures and faults. We investigate these effects based on Biot’s theory of poroelasticity. To this end, we consider a 1D layered representation of the fracture and the associated damaged zone in conjunction with embedding elastic and impermeable half-spaces. We compare a fully elastic fracture-background reference model with a model consisting of a poroelastic fracture and damaged zone enclosed within an elastic background. For these two models, we compute the normal incidence seismic P-wave reflectivities at the background-fracture and at background-damaged zone interfaces, respectively. We also include a model that represents the fracture-damaged zone poroelastic system as an equivalent viscoelastic layer. We aim to test the validity of this representation since it would imply that a similar correspondence is possible to establish when more realistic descriptions of the damaged zone are considered. For this additional model, the viscoelastic layer is characterized by its frequency-dependent P-wave modulus, estimated by applying White’s classical upscaling procedure for 1D poroelastic media composed of alternating layers. We test the validity of the elastic-viscolastic model by comparing its reflectivity against the corresponding results from the elastic-poroelastic model. In doing so, we find that the simplified elastic-viscoelastic model faithfully reproduces the reflectivity of its elastic-poroelastic counterpart up to a threshold frequency, at which resonances produced within the viscoelastic layer become dominant. Overall, our results show that, in the seismic frequency range, there is a substantial increase in seismic fracture reflectivity resulting from the combined effects of fluid pressure diffusion and mechanical weakening associated with the surrounding damaged zone. This, in turn, indicates that the seismic reflectivity of a fracture may indeed be dominated by the thickness and physical properties of its surrounding damaged zone rather than by the properties of the fracture sensu stricto.</p>

2021 ◽  
Author(s):  
Samuel Chapman ◽  
Jan V. M. Borgomano ◽  
Beatriz Quintal ◽  
Sally M. Benson ◽  
Jerome Fortin

<p>Monitoring of the subsurface with seismic methods can be improved by better understanding the attenuation of seismic waves due to fluid pressure diffusion (FPD). In porous rocks saturated with multiple fluid phases the attenuation of seismic waves by FPD is sensitive to the mesoscopic scale distribution of the respective fluids. The relationship between fluid distribution and seismic wave attenuation could be used, for example, to assess the effectiveness of residual trapping of carbon dioxide (CO2) in the subsurface. Determining such relationships requires validating models of FPD with accurate laboratory measurements of seismic wave attenuation and modulus dispersion over a broad frequency range, and, in addition, characterising the fluid distribution during experiments. To address this challenge, experiments were performed on a Berea sandstone sample in which the exsolution of CO2 from water in the pore space of the sample was induced by a reduction in pore pressure. The fluid distribution was determined with X-ray computed tomography (CT) in a first set of experiments. The CO2 exosolved predominantly near the outlet, resulting in a heterogeneous fluid distribution along the sample length. In a second set of experiments, at similar pressure and temperature conditions, the forced oscillation method was used to measure the attenuation and modulus dispersion in the partially saturated sample over a broad frequency range (0.1 - 1000 Hz). Significant P-wave attenuation and dispersion was observed, while S-wave attenuation and dispersion were negligible. These observations suggest that the dominant mechanism of attenuation and dispersion was FPD. The attenuation and dispersion by FPD was subsequently modelled by solving Biot’s quasi-static equations of poroelasticity with the finite element method. The fluid saturation distribution determined from the X-ray CT was used in combination with a Reuss average to define a single phase effective fluid bulk modulus. The numerical solutions agree well with the attenuation and modulus dispersion measured in the laboratory, supporting the interpretation that attenuation and dispersion was due to FPD occurring in the heterogenous distribution of the coexisting fluids. The numerical simulations have the advantage that the models can easily be improved by including sub-core scale porosity and permeability distributions, which can also be determined using X-ray CT. In the future this could allow for conducting experiments on heterogenous samples.</p>


2016 ◽  
Vol 140 (4) ◽  
pp. 2554-2570 ◽  
Author(s):  
Nicolás D. Barbosa ◽  
J. Germán Rubino ◽  
Eva Caspari ◽  
Marco Milani ◽  
Klaus Holliger

Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. WA183-WA189 ◽  
Author(s):  
Ralf Jänicke ◽  
Beatriz Quintal ◽  
Fredrik Larsson ◽  
Kenneth Runesson

We have investigated viscoelastic substitute models for seismic attenuation caused by fluid pressure diffusion in fluid-saturated porous media. Fluid pressure diffusion may locally occur associated with fracture leak off and/or squirt flow. We use a homogenization scheme with numerical model reduction (NMR), recently established in the literature, and we derive the corresponding viscoelastic material properties that are apparent at a larger scale (i.e., the observer scale). Moreover, we find that the rheology of the resulting viscoelastic model is of the Maxwell-Zener type. Based on a series of numerical experiments, we find that this method is able to accurately and efficiently predict the overall attenuation and stiffness moduli dispersion for a range of scenarios without resolving the substructure problem explicitly. Computational homogenization, together with NMR, can be useful to simulate seismic wave propagation using a viscoelastic substitute model that accurately reproduces the energy dissipation and dispersion of a heterogeneous medium in which squirt flow and/or fracture leak-off occurs.


2017 ◽  
Vol 210 (1) ◽  
pp. 223-227 ◽  
Author(s):  
J. Germán Rubino ◽  
Eva Caspari ◽  
Tobias M. Müller ◽  
Klaus Holliger

Abstract The degree of connectivity of fracture networks is a key parameter that controls the hydraulic properties of fractured rock formations. The current understanding is that this parameter does not alter the effective elastic properties of the probed medium and, hence, cannot be inferred from seismic data. However, this reasoning is based on static elasticity, which neglects dynamic effects related to wave-induced fluid pressure diffusion (FPD). Using a numerical upscaling procedure based on the theory of quasi-static poroelasticity, we provide the first evidence to suggest that fracture connectivity can reduce significantly velocity anisotropy in the seismic frequency band. Analyses of fluid pressure fields in response to the propagation of seismic waves demonstrate that this reduction of velocity anisotropy is not due to changes of the geometrical characteristics of the probed fracture networks, but rather related to variations of the stiffening effect of the fracture fluid in response to FPD. These results suggest that accounting for FPD effects may not only allow for improving estimations of geometrical and mechanical properties of fracture networks, but may also provide information with regard to the effective hydraulic properties.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. MR105-MR109 ◽  
Author(s):  
Guangquan Li ◽  
Pengfei Zhang ◽  
Jingshu Sun

The interaction between seismic waves in rocks and fluid pressure in pores remains one of the most challenging topics in seismic exploration. A perturbation technique is used to develop a new model to describe the propagation of fluid pressure in pores associated with P-waves in the rock matrix. The basic idea is to approximate classification of waves in saturated rocks into two orders. The first order is a dominant P-wave in the matrix, and the second order is a companion fluid wave induced by the first-order wave. This approach is innovative and advantageous in that the complex interactions of stress between the matrix and fluid are decoupled and the mathematical solutions become easy to seek for. The fluid pressure wave is analyzed by a 1D plane wave ignoring the Poisson’s effect. Parameterization of the model using sandstone saturated with water results in the conclusion that the fluid wave has an amplitude one order of magnitude smaller than the matrix wave and the two waves have a very slight phase difference. We have also evaluated the potential application of our model to shale gas and shale oil.


Author(s):  
Soo-Hyoung Lee ◽  
Jae Min Lee ◽  
Sang-Ho Moon ◽  
Kyoochul Ha ◽  
Yongcheol Kim ◽  
...  

AbstractHydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 309-318 ◽  
Author(s):  
Jorge O. Parra

The transversely isotropic poroelastic wave equation can be formulated to include the Biot and the squirt‐flow mechanisms to yield a new analytical solution in terms of the elements of the squirt‐flow tensor. The new model gives estimates of the vertical and the horizontal permeabilities, as well as other measurable rock and fluid properties. In particular, the model estimates phase velocity and attenuation of waves traveling at different angles of incidence with respect to the principal axis of anisotropy. The attenuation and dispersion of the fast quasi P‐wave and the quasi SV‐wave are related to the vertical and the horizontal permeabilities. Modeling suggests that the attenuation of both the quasi P‐wave and quasi SV‐wave depend on the direction of permeability. For frequencies from 500 to 4500 Hz, the quasi P‐wave attenuation will be of maximum permeability. To test the theory, interwell seismic waveforms, well logs, and hydraulic conductivity measurements (recorded in the fluvial Gypsy sandstone reservoir, Oklahoma) provide the material and fluid property parameters. For example, the analysis of petrophysical data suggests that the vertical permeability (1 md) is affected by the presence of mudstone and siltstone bodies, which are barriers to vertical fluid movement, and the horizontal permeability (1640 md) is controlled by cross‐bedded and planar‐laminated sandstones. The theoretical dispersion curves based on measurable rock and fluid properties, and the phase velocity curve obtained from seismic signatures, give the ingredients to evaluate the model. Theoretical predictions show the influence of the permeability anisotropy on the dispersion of seismic waves. These dispersion values derived from interwell seismic signatures are consistent with the theoretical model and with the direction of propagation of the seismic waves that travel parallel to the maximum permeability. This analysis with the new analytical solution is the first step toward a quantitative evaluation of the preferential directions of fluid flow in reservoir formation containing hydrocarbons. The results of the present work may lead to the development of algorithms to extract the permeability anisotropy from attenuation and dispersion data (derived from sonic logs and crosswell seismics) to map the fluid flow distribution in a reservoir.


1984 ◽  
Vol 74 (4) ◽  
pp. 1263-1274
Author(s):  
Lawrence H. Jaksha ◽  
David H. Evans

Abstract A velocity model of the crust in northwestern New Mexico has been constructed from an interpretation of direct, refracted, and reflected seismic waves. The model suggests a sedimentary section about 3 km thick with an average P-wave velocity of 3.6 km/sec. The crystalline upper crust is 28 km thick and has a P-wave velocity of 6.1 km/sec. The lower crust below the Conrad discontinuity has an average P-wave velocity of about 7.0 km/sec and a thickness near 17 km. Some evidence suggests that velocity in both the upper and lower crust increases with depth. The P-wave velocity in the uppermost mantle is 7.95 ± 0.15 km/sec. The total crustal thickness near Farmington, New Mexico, is about 48 km (datum = 1.6 km above sea level), and there is evidence for crustal thinning to the southeast.


2020 ◽  
Author(s):  
Brady D. Hislop ◽  
Chelsea M. Heveran ◽  
Ronald K. June

AbstractFluid transport between cartilage and bone is critical to joint health. The objective of this study was to develop and analytically validate a finite element model of osteochondral tissue capable of modeling cartilage-bone fluid transport. A biphasic viscoelastic model using an ellipsoidal fiber distribution was created with three distinct layers of cartilage (superficial zone, middle zone, and deep zone) along with a layer of subchondral bone. For stress-relaxation in unconfined compression, our results for compressive stress, radial stress, effective fluid pressure, and elastic recoil were compared with established biphasic analytical solutions. Our model also shows the development of fluid pressure gradients at the cartilage-bone interface during loading. Fluid pressure gradients developed at the cartilage-bone interface with consistently higher pressures in cartilage following initial loading to 10% strain, followed by convergence towards equal pressures in cartilage and bone during the 400s relaxation period. These results provide additional evidence that fluid is transported between cartilage and bone during loading and improves upon estimates of the magnitude of this effect through incorporating a realistic distribution and estimate of the collagen ultrastructure. Understanding fluid transport between cartilage and bone may be key to new insights about the mechanical and biological environment of both tissues in health and disease.


Sign in / Sign up

Export Citation Format

Share Document