scholarly journals Seismically induced changes in groundwater levels and temperatures following the ML5.8 (ML5.1) Gyeongju earthquake in South Korea

Author(s):  
Soo-Hyoung Lee ◽  
Jae Min Lee ◽  
Sang-Ho Moon ◽  
Kyoochul Ha ◽  
Yongcheol Kim ◽  
...  

AbstractHydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.

2018 ◽  
Vol 7 (4) ◽  
pp. 191
Author(s):  
Sherwan Sh. Qurtas

Recharge estimation accurately is crucial to proper groundwater resource management, for the groundwater is dynamic and replenished natural resource. Usually recharge estimation depends on the; the water balance, water levels, and precipitation. This paper is studying the south-middle part of Erbil basin, with the majority of Quaternary sediments, the unconfined aquifer system is dominant, and the unsaturated zone is ranging from 15 to 50 meters, which groundwater levels response is moderate. The purpose of this study is quantification the natural recharge from precipitation. The water table fluctuation method is applied; using groundwater levels data of selected monitoring wells, neighboring meteorological station of the wells, and the specific yield of the aquifers. This method is widely used for its simplicity, scientific, realistic, and direct measurement. The accuracy depends on the how much the determination of specific yield is accurate, accuracy of the data, and the extrapolations of recession of groundwater levels curves of no rain periods. The normal annual precipitation there is 420 mm, the average recharge is 89 mm, and the average specific yield is around 0.03. The data of one water year of 2009 and 2010 has taken for some technical and accuracy reasons.


Author(s):  
Kui Sun ◽  
Limin Fan ◽  
Yucheng Xia ◽  
Cheng Li ◽  
Jianping Chen ◽  
...  

Abstract Groundwater of Luohe Formation is the main water source for industrial and agricultural and residential use in Binchang mining area, which is one of the key elements to water conservation coal mining. However, few studies are available to document the enrichment characteristics and influence of underground coal mining on groundwater for the Luohe Formation. This study evaluates the changes of groundwater levels and spring flow caused by mining activities to explore the influence mechanism of coal mining on groundwater by comparatively analysing existing mining data and survey data combined with a series of mapping methods. The results show that the aquifer of Luohe Formation are gradually thinning south-eastwards, disappeared at the mining boundary. In the vertical direction, the lithological structure is distinct, due to alternative sedimentation of meandering river facies and braided river facies. According to the yielding property, the aquifer is divided into three sections, namely, strong water-rich section, medium water-rich section, and weak water-rich section, which are located in northwest and central part, southwest, and the rest part of the mining area, respectively. Mining of Tingnan Coal Mine since 2004 has caused a 3.16 to 194.87 meters drop in groundwater level of Luohe Formation. Until 2015, 70.10% of the mining area undergoes a groundwater level drop larger than 10.00 meters. Another influence of underground mining is that the total flow from 34 springs in 8 southern coal mines of the area has decreased by 286.48 L/s with a rate of decrease at 46.95% from 2007 to 2017. The areas that groundwater level falls or spring flow declines are manly located in the mine gob areas. Results also indicate that the ratio of the height of water conducted fracture zone to the mining height in Binchang mining area is between 16.85 and 27.92. This may increase ground water flow in vertical direction, causing a water level in the aquifer system to drop and ultimately decreasing the flow from the springs. The research results will provide data and theoretical support for the protection of groundwater resources and water conservation coal mining of Luohe Formation in Binchang mining area.


2012 ◽  
Vol 20 (1) ◽  
pp. 29-34
Author(s):  
M. Pásztorová ◽  
J. Skalová ◽  
J. Vitková ◽  
M. Juráková

Development of groundwater levels as a consequense of climate changeClimate change poses a significant threat to many wetland ecosystems. Wetlands exist in a transition zone between aquatic and terrestrial environments and can be affected by slight alterations in regional hydrology, which can influence climate change through air temperature changes, regional changes in a rainfall regime, surface run-off, snow, duration of the winter season, groundwater resources and evapotranspiration.Climate change in wetland areas is most significantly reflected in water levels and adjacent groundwater levels, and it can significantly change the hydroecological proportions of wetland ecosystems and endanger rare wetland fauna and flora communities. The focus of this paper is the impact of climate change on the groundwater level in the Záhorie Protected Landscape area in the Zelienka national nature reservation. The impact of the climate change was solved through the meteorological characteristic changes adapted by the GISS98 and CCCM2000 climatic scenarios. The groundwater level was determined by the HYDRUS-ET model for the time frames 2010, 2030 and 2075 in 20-year time intervals and consequently compared to the reference period of 1971-1990.


Author(s):  
Michelle Sneed ◽  
Justin T. Brandt

Abstract. Groundwater has been a major source of agricultural, municipal, and domestic water supply since the early 1920s in the Coachella Valley, California, USA. Land subsidence, resulting from aquifer-system compaction and groundwater-level declines, has been a concern of the Coachella Valley Water District (CVWD) since the mid-1990s. As a result, the CVWD has implemented several projects to address groundwater overdraft that fall under three categories – groundwater substitution, conservation, and managed aquifer-recharge (MAR). The implementation of three projects in particular – replacing groundwater extraction with surface water from the Colorado River and recycled water (Mid-Valley Pipeline project), reducing water usage by tiered-rate costs, and increasing groundwater recharge at the Thomas E. Levy Groundwater Replenishment Facility – are potentially linked to markedly improved groundwater levels and subsidence conditions, including in some of the historically most overdrafted areas in the southern Coachella Valley. Groundwater-level and subsidence monitoring have tracked the effect these projects have had on the aquifer system. Prior to about 2010, water levels persistently declined, and some had reached historically low levels by 2010. Since about 2010, however, groundwater levels have stabilized or partially recovered, and subsidence has stopped or slowed substantially almost everywhere it previously had been observed; uplift was observed in some areas. Furthermore, results of Interferometric Synthetic Aperture Radar analyses for 1995–2017 indicate that as much as about 0.6 m of subsidence occurred; nearly all of which occurred prior to 2010. Continued monitoring of water levels and subsidence is necessary to inform the CVWD about future mitigation measures. The water management strategies implemented by the CVWD can inform managers of other overdrafted and subsidence-prone basins as they seek solutions to reduce overdraft and subsidence.


2020 ◽  
Vol 28 (8) ◽  
pp. 2635-2656
Author(s):  
Samson Oiro ◽  
Jean-Christophe Comte ◽  
Chris Soulsby ◽  
Alan MacDonald ◽  
Canute Mwakamba

AbstractThe Nairobi volcano-sedimentary regional aquifer system (NAS) of Kenya hosts >6 M people, including 4.7 M people in the city of Nairobi. This work combines analysis of multi-decadal in-situ water-level data with numerical groundwater modelling to provide an assessment of the past and likely future evolution of Nairobi’s groundwater resources. Since the mid-1970s, groundwater abstraction has increased 10-fold at a rate similar to urban population growth, groundwater levels have declined at a median rate of 6 m/decade underneath Nairobi since 1950, whilst built-up areas have increased by 70% since 2000. Despite the absence of significant trends in climatic data since the 1970s, more recently, drought conditions have resulted in increased applications for borehole licences. Based on a new conceptual understanding of the NAS (including insights from geophysics and stable isotopes), numerical simulations provide further quantitative estimates of the accelerating negative impact of abstraction and capture the historical groundwater levels quite well. Analysis suggests a groundwater-level decline of 4 m on average over the entire aquifer area and up to 46 m below Nairobi, net groundwater storage loss of 1.5 billion m3 and 9% river baseflow reduction since 1950. Given current practices and trajectories, these figures are predicted to increase six-fold by 2120. Modelled future management scenarios suggest that future groundwater abstraction required to meet Nairobi projected water demand is unsustainable and that the regional anthropogenically-driven depletion trend can be partially mitigated through conjunctive water use. The presented approach can inform groundwater assessment for other major African cities undergoing similar rapid groundwater development.


Author(s):  
K. Furuno ◽  
A. Kagawa ◽  
O. Kazaoka ◽  
T. Kusuda ◽  
H. Nirei

Abstract. Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.


2018 ◽  
Author(s):  
Nicholas D. Woodman ◽  
William G. Burgess ◽  
Kazi Matin Ahmed ◽  
Anwar Zahid

Abstract. The coupled poro-mechanical behaviour of geologic-fluid systems is fundamental to numerous processes in structural geology, seismology and geotechnics but is frequently overlooked in hydrogeology. Substantial poro-mechanical influences on groundwater head have recently been highlighted in the Bengal Aquifer System, however, driven by terrestrial water loading across the Ganges-Brahmaputra-Meghna floodplains. Groundwater management in this strategically important fluvio-deltaic aquifer, the largest in south Asia, requires a coupled hydro-mechanical approach which acknowledges poro-elasticity. We present a simple partially-coupled, one-dimensional poro-elastic model of the Bengal Aquifer System, and explore the poro-mechanical responses of the aquifer to surface boundary conditions representing hydraulic head and mechanical load under three modes of terrestrial water variation. The characteristic responses, shown as amplitude and phase of hydraulic head in depth profile and of ground surface deflection, demonstrate (i) the limits to using water levels in piezometers to indicate groundwater recharge, as conventionally applied in groundwater resources management; (ii) the conditions under which piezometer water levels respond primarily to changes in the mass of terrestrial water storage, as applied in geological weighing lysimetry; (iii) the relationship of ground surface vertical deflection to changes in groundwater storage; and (iv) errors of attribution that could result from ignoring the poroelastic behaviour of the aquifer. These concepts are illustrated through application of the partially-coupled model to interpret multi-level piezometer data at two sites in southern Bangladesh. There is a need for further research into the coupled responses of the aquifer due to more complex forms of surface loading, particularly from rivers.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mara Meggiorin ◽  
Giulia Passadore ◽  
Silvia Bertoldo ◽  
Andrea Sottani ◽  
Andrea Rinaldo

The social, economic, and ecological importance of the aquifer system within the Bacchiglione basin (Veneto, IT) is noteworthy, and there is considerable disagreement among previous studies over its sustainable use. Investigating the long-term quantitative sustainability of the groundwater system, this study presents a statistical methodology that can be applied to similar cases. Using a combination of robust and widely used techniques, we apply the seasonal Mann–Kendall test and the Sen’s slope estimator to the recorded groundwater level timeseries. The analysis is carried out on a large and heterogeneous proprietary dataset gathering hourly groundwater level timeseries at 79 control points, acquired during the period 2005–2019. The test identifies significant decreasing trends for most of the available records, unlike previous studies on the quantitative status of the same resource which covered the domain investigated here for a slightly different period: 2000–2014. The present study questions the reason for such diverging results by focusing on the method’s accuracy. After carrying out a Fourier analysis on the longest available timeseries, for studies of groundwater status assessment this work suggests applying the Mann–Kendall test to timeseries longer than 20 years (because otherwise the analysis would be affected by interannual periodicities of the water cycle). A further analysis of two 60-year-long monthly timeseries between 1960 and 2020 supports the actual sustainable use of the groundwater resource, the past deployment of the groundwater resources notwithstanding. Results thus prove more reliable, and meaningful inferences on the longterm sustainability of the groundwater system are possible.


2021 ◽  
Author(s):  
Simon Benk ◽  
Robert Lehmann ◽  
Kai Uwe Totsche ◽  
Gerd Gleixner

<p>With surface systems changing rapidly on a global scale, it is important to understand how this will affect groundwater resources and ecosystems in the subsurface. The molecular composition of dissolved organic matter (DOM) integrates essential information on metabolic functioning and could therefore reveal changes of groundwater ecosystems in high detail. Here, we evaluate a 6-year time series of ultrahigh-resolution DOM composition analysis of groundwater from a hillslope well transect within the Hainich Critical Zone Exploratory, Germany. We predict ecosystem functionality by assigning molecular sum formulas to metabolic pathways via the KEGG database. Our data support hydrogeological characterizations of a compartmentalized fractured multi-storey aquifer system and reveal distinct metabolic functions that largely depend on the compartment’s relative surface-connectivity or isolation. We show that seasonal fluctuation of groundwater levels, coinciding with cross-stratal exchange can substantially impact the local inventory of functional metabolites in DOM. Furthermore, we find that extreme conditions of groundwater recharge following pronounced groundwater lowstand cause strong alterations of the functional metabolome in DOM even in aquifer compartments, which usually show minimal variation in DOM composition. Our findings suggest that bedrock groundwater ecosystems might be functionally vulnerable to hydrogeological extremes.</p>


1999 ◽  
Vol 3 (3) ◽  
pp. 353-361 ◽  
Author(s):  
J. A. Butterworth ◽  
R. E. Schulze ◽  
L. P. Simmonds ◽  
P. Moriarty ◽  
F. Mugabe

Abstract. To evaluate the effects of variations in rainfall on groundwater, long-term rainfall records were used to simulate groundwater levels over the period 1953-96 at an experimental catchment in south-east Zimbabwe. Two different modelling methods were adopted. Firstly, a soil water balance model (ACRU) simulated drainage from daily rainfall and evaporative demand; groundwater levels were predicted as a function of drainage, specific yield and water table height. Secondly, the cumulative rainfall departure method was used to model groundwater levels from monthly rainfall. Both methods simulated observed groundwater levels over the period 1992-96 successfully, and long-term simulated trends in historical levels were comparable. Results suggest that large perturbations in groundwater levels area a normal feature of the response of a shallow aquifer to variations in rainfall. Long-term trends in groundwater levels are apparent and reflect the effect of cycles in rainfall. Average end of dry season water levels were simulated to be almost 3 m higher in the late 1970s compared to those of the early 1990s. The simulated effect of prolonged low rainfall on groundwater levels was particularly severe during the period 1981-92 with a series of low recharge years unprecedented in the earlier record. More recently, above average rainfall has resulted in generally higher groundwater levels. The modelling methods described may be applied in the development of guidelines for groundwater schemes to help ensure safe long-term yields and to predict future stress on groundwater resources in low rainfall periods; they are being developed to evaluate the effects of land use and management change on groundwater resources.


Sign in / Sign up

Export Citation Format

Share Document