Catchment scale prediction of soil moisture trends from Cosmic Ray Neutron Rover Surveys using machine learning

Author(s):  
Erik Nixdorf ◽  
Marco Hannemann ◽  
Uta Ködel ◽  
Martin Schrön ◽  
Thomas Kalbacher

<p>Soil moisture is a critical hydrological component for determining hydrological state conditions and a crucial variable in controlling land-atmosphere interaction including evapotranspiration, infiltration and groundwater recharge.</p><p>At the catchment scale, spatial- temporal variations of soil moisture distribution are highly variable due to the influence of various factors such as soil heterogeneity, climate conditions, vegetation and geomorphology. Among the various existing soil moisture monitoring techniques, the application of vehicle-mounted Cosmic Ray Sensors (CRNS) allows monitoring soil moisture noninvasively by surveying larger regions within a reasonable time. However, measured data and their corresponding footprints are often allocated along the existing road network leaving inaccessible parts of a catchment unobserved and surveying larger areas in short intervals is often hindered by limited manpower.</p><p>In this study, data from more than 200 000 CRNS rover readings measured over different regions of Germany within the last 4 years have been employed to characterize the trends of soil moisture distribution in the 209 km<sup>2</sup> large Mueglitz River Basin in Eastern Germany. Subsets of the data have been used to train three different supervised machine learning algorithms (multiple linear regression, random forest and artificial neural network) based on 85 independent relevant dynamic and stationary features derived from public databases.  The Random Forest model outperforms the other models (R2= ~0.8), relying on day-of-year, altitude, air temperature, humidity, soil organic carbon content and soil temperature as the five most influencing predictors.</p><p>After test and training the models, CRNS records for each day of the last decade are predicted on a 250 × 250 m grid of Mueglitz River Basin using the same type of features. Derived CRNS record distributions are compared with both, spatial soil moisture estimates from a hydrological model and point estimates from a sensor network operated during spring 2019. After variable standardization, preliminary results show that the applied Random Forest model is able to resemble the spatio-temporal trends estimated by the hydrological model and the point measurements. These findings demonstrate that training machine learning models on domain-unspecific large datasets of CRNS records using spatial-temporally available predictors has the potential to fill measurement gaps and to improve soil moisture dynamics predictions on a catchment scale.</p>

2014 ◽  
Vol 14 (10) ◽  
pp. 3465-3472 ◽  
Author(s):  
Auro C. Almeida ◽  
Ritaban Dutta ◽  
Trenton E. Franz ◽  
Andrew Terhorst ◽  
Philip J. Smethurst ◽  
...  

2021 ◽  
Author(s):  
Till Francke ◽  
Maik Heistermann ◽  
Markus Köhli ◽  
Christian Budach ◽  
Martin Schrön ◽  
...  

Abstract. Cosmic Ray Neutron Sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. The intrinsic integration over a radial hectare-scale footprint is a clear advantage for averaging out small-scale heterogeneity, but on the other hand the data may become hard to interpret in complex terrain with patchy land use. This study presents a directional shielding approach to block neutrons from certain directions and explores its potential to gain a sharper view on the surrounding soil moisture distribution. Using the Mont-Carlo code URANOS, we modelled the effect of additional polyethylene shields on the horizontal field of view and assessed its impact on the epithermal count rate, propagated uncertainties, and aggregation time. The results demonstrate that directional CRNS measurements are strongly dominated by isotropic neutron transport, which dilutes the signal of the targeted direction especially from the far field. For typical count rates of customary CRNS stations, directional shielding of halfspaces could not lead to acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates should be feasible.


2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


Ecohydrology ◽  
2008 ◽  
Vol 1 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Alex J. Rinehart ◽  
Luis A. Méndez-Barroso ◽  
Carlos A. Aragón ◽  
Gautam Bisht ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1174 ◽  
Author(s):  
Honglin Zhu ◽  
Tingxi Liu ◽  
Baolin Xue ◽  
Yinglan A. ◽  
Guoqiang Wang

Soil moisture distribution plays a significant role in soil erosion, evapotranspiration, and overland flow. Infiltration is a main component of the hydrological cycle, and simulations of soil moisture can improve infiltration process modeling. Different environmental factors affect soil moisture distribution in different soil layers. Soil moisture distribution is influenced mainly by soil properties (e.g., porosity) in the upper layer (10 cm), but by gravity-related factors (e.g., slope) in the deeper layer (50 cm). Richards’ equation is a widely used infiltration equation in hydrological models, but its homogeneous assumptions simplify the pattern of soil moisture distribution, leading to overestimates. Here, we present a modified Richards’ equation to predict soil moisture distribution in different layers along vertical infiltration. Two formulae considering different controlling factors were used to estimate soil moisture distribution at a given time and depth. Data for factors including slope, soil depth, porosity, and hydraulic conductivity were obtained from the literature and in situ measurements and used as prior information. Simulations were compared between the modified and the original Richards’ equations and with measurements taken at different times and depths. Comparisons with soil moisture data measured in situ indicated that the modified Richards’ equation still had limitations in terms of reproducing soil moisture in different slope positions and rainfall periods. However, compared with the original Richards’ equation, the modified equation estimated soil moisture with spatial diversity in the infiltration process more accurately. The equation may benefit from further solutions that consider various controlling factors in layers. Our results show that the proposed modified Richards’ equation provides a more effective approach to predict soil moisture in the vertical infiltration process.


1999 ◽  
Vol 43 ◽  
pp. 103-108
Author(s):  
Nozomu HIROSE ◽  
Toshio KOIKE ◽  
Hiroshi ISHIDAIRA ◽  
Takeo TADONO ◽  
Wang Shaoling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document