Water exchange process and water uptake for irrigated maize cropland in a desert-oasis transition area, Northwest China

Author(s):  
Yongyong Zhang ◽  
Wenzhi Zhao ◽  
Chun Zhao

<p>Soil water and groundwater convert frequently under cropland in a desert-oasis transition area, Northwest China. Crops variedly utilize soil water and groundwater during different growth periods under the cropland with shallow groundwater. The study of water exchange process under irrigated cropland has important significance for regulating the contradiction between water saving and groundwater recharge in the desert-oasis transition area. Soil moisture and soil matric potential at depths ranging from 0 to 70 cm were measured using HydraProbe II and TEROS-21 soil sensors in maize (Zea mays L.) fields in 2019. Stable isotope (δ<sup>2</sup>H、δ<sup>18</sup>O) in different water sources (precipitation, irrigation water, soil water, crop stem, and groundwater) was also measured. The results showed that the groundwater depth varied between 0.57-1.07 m during the maize growth periods. The groundwater depth increased in summer due to the influence of pumped well, while the depth decreased in autumn resulting from the irrigation return water. In the maize growing season, soil moisture and water potential at depths from 10 cm to 30 cm responded to three irrigation times, while soil moisture and water potential below the depth of 50 cm were greater and kept a steady state, which were affected by upward capillary rise of groundwater. The relationship of soil water stable isotope values ​​was δ<sup>2</sup>H=2.45δ<sup>18</sup>O-31.41, which was lower than the slope of the local atmospheric precipitation line due to the evaporation effect. The soil water stable isotope values at depth of 10 cm varied, while the variation of soil water stable isotope values decreased with the increase of soil depth. The soil water stable isotope values at the depths from 70 to 90cm were close to the groundwater isotope values, which were affected by the groundwater. The stable isotope values in crop stem water were relatively scattered, indicating that the maize used multiple water sources and the water use strategy changed during the growth periods.</p>

2020 ◽  
Vol 56 (5-6) ◽  
pp. 465-479 ◽  
Author(s):  
Orlando Mauricio Quiroz Londoño ◽  
Asunción Romanelli ◽  
Daniel Emilio Martínez ◽  
Héctor Enrique Massone

Koedoe ◽  
2014 ◽  
Vol 56 (1) ◽  
Author(s):  
Robert Buitenwerf ◽  
Andrew Kulmatiski ◽  
Steven I. Higgins

Soil water potential is crucial to plant transpiration and thus to carbon cycling and biosphere–atmosphere interactions, yet it is difficult to measure in the field. Volumetric and gravimetric water contents are easy and cheap to measure in the field, but can be a poor proxy of plant-available water. Soil water content can be transformed to water potential using soil moisture retention curves. We provide empirically derived soil moisture retention curves for seven soil types in the Kruger National Park, South Africa. Site-specific curves produced excellent estimates of soil water potential from soil water content values. Curves from soils derived from the same geological substrate were similar, potentially allowing for the use of one curve for basalt soils and another for granite soils. It is anticipated that this dataset will help hydrologists and ecophysiologists understand water dynamics, carbon cycling and biosphere–atmosphere interactions under current and changing climatic conditions in the region.


2019 ◽  
Vol 35 (1) ◽  
pp. 39-50
Author(s):  
H. C. Pringle, III ◽  
L. L. Falconer ◽  
D. K. Fisher ◽  
L. J. Krutz

Abstract. Irrigated acreage is expanding and groundwater supplies are decreasing in the Mississippi Delta. Efficient irrigation scheduling of soybean [ (L.) Merr] will aid in conservation efforts to sustain groundwater resources. The objective of this study was to develop irrigation initiation recommendations for soybean grown on Mississippi Delta soils. Field studies were conducted on a deep silty clay (SiC) in 2012, 2013, 2014, and 2015 and on a deep silty clay loam (SiCL) and deep silt loam (SiL) or loam (L) soil in 2013, 2014, and 2015. Irrigation was initiated multiple times during the growing season and soybean yield and net return were determined to evaluate the effectiveness of each initiation timing. Growth stage, soil water potential (SWP), and soil water deficit (SWD) were compared at these initiation timings to determine which parameter or combination of parameters consistently predicted the resulting greatest yields and net returns. Stress conditions that reduce yield can occur at any time from late vegetative stages to full seed on these deep soils. The wide range of trigger values found for SWP and SWD to increase yields in different years emphasizes the complexity of irrigation scheduling. Monitoring soil moisture by itself or use of a single trigger value is not sufficient to optimize irrigation scheduling to maximize soybean yield with the least amount of water every year on these soils. Monitoring one or more parameters (e.g., leaf water potential, canopy temperature, air temperature, humidity, solar radiation, and wind) is needed in conjunction with soil moisture to directly or indirectly quantify the abiotic stresses on the plant to better define when a yield reducing stress is occurring. Keywords: Irrigation initiation, Irrigation scheduling, Soil water deficit, Soil water potential, Soybean, Water conservation.


2019 ◽  
Vol 62 (2) ◽  
pp. 363-370
Author(s):  
Ruixiu Sui ◽  
Horace C. Pringle ◽  
Edward M. Barnes

Abstract. One of the methods for irrigation scheduling is to use sensors to measure the soil moisture level in the plant root zone and apply water if there is a water shortage for the plants. The measurement accuracy and reliability of the soil moisture sensors are critical for sensor-based irrigation management. This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, the MPS-2 and 200SS soil water potential (SWP) sensors, and the 200TS soil temperature sensor. Six 183 cm × 183 cm × 71 cm wooden compartments were built inside a greenhouse, and each compartment was filled with one type of soil from the Mississippi Delta. A total of 66 sensors with 18 data loggers were installed in the soil compartments to measure SVWC, SWP, and soil temperature. Soil samples were periodically collected from the compartments to determine SVWC using the gravimetric method. SVWC measured by the sensors was compared with that determined by the gravimetric method. The SVWC readings from the sensors had a linear regression relationship with the gravimetric SVWC (r2 = 0.82). This relationship was used to calibrate the sensor readings. The SVWC and SWP sensors could detect the general trend of soil moisture changes. However, their measurements varied significantly among the sensors. To obtain accurate absolute soil moisture measurements, the sensors require individual and soil-specific calibration. The 5TM, MPS-2, and 200TS sensors performed well in soil temperature measurement tests. Individual temperature readings from these sensors were very close to the mean of all sensor readings. Keywords: Irrigation, Sensors, Soil types, Soil water content, Soil water potential.


2012 ◽  
Vol 170-173 ◽  
pp. 2407-2413 ◽  
Author(s):  
Wei Chen ◽  
Dao Cai Chi ◽  
En Bo Tai ◽  
Xu Dong Zhang ◽  
Tao Tao Chen

Pot experiments were conducted under different status of soil moisture potential during different stages of rice. The results show that soil moisture potential regulation and control is able to increase the rice yield at each growth stages after returning green, the suitable soil water potential criteria for middle-season rice in Liaoning province at different stages is 5~10kPa in tillering initial stage, 35kPa at most in tillering final stage, 5~10kPa in jointing and heading stages, not more than 20kPa in Milk maturity stage; re-watering post drought has a compensation effect to rice whose soil suction potential is controlled in 5~10kPa at tillering initial stage according to the results that its tillers number, output, final root dry biomass and leaf dry weight were significant exceeding contrast; The research on rice quality indicates that water stress in jointing stage increase protein content but reduce eating quality.


Koedoe ◽  
2014 ◽  
Vol 56 (1) ◽  
Author(s):  
Robert Buitenwerf ◽  
Andrew Kulmatiski ◽  
Steven I. Higgins

Soil water potential is crucial to plant transpiration and thus to carbon cycling and biosphere–atmosphere interactions, yet it is difficult to measure in the field. Volumetric and gravimetric water contents are easy and cheap to measure in the field, but can be a poor proxy of plant-available water. Soil water content can be transformed to water potential using soil moisture retention curves. We provide empirically derived soil moisture retention curves for seven soil types in the Kruger National Park, South Africa. Site-specific curves produced excellent estimates of soil water potential from soil water content values. Curves from soils derived from the same geological substrate were similar, potentially allowing for the use of one curve for basalt soils and another for granite soils. It is anticipated that this dataset will help hydrologists and ecophysiologists understand water dynamics, carbon cycling and biosphere–atmosphere interactions under current and changing climatic conditions in the region.


2020 ◽  
Vol 8 ◽  
Author(s):  
Guohua Wang ◽  
Qianqian Gou ◽  
Yulian Hao ◽  
Huimin Zhao ◽  
Xiafang Zhang

An understanding of soil water content dynamics is important for vegetation restoration in an arid desert-oasis ecotone under different landscapes. In this study, the dynamics of soil water content under three typical landscapes (i.e., desert, sand-binding shrubland, and farmland shelter woodland) were investigated in the Hexi Corridor, northwest China, during the growing season from 2002 to 2013. The results showed that the soil water content in the deep layers decreased from 20–30% to a stable low level of 3–5% in the desert and shrubland. For the farmland shelter woodland, the soil water content at the deep layers also decreased, but the decrease rate was much smaller than the desert and shrubland. The decrease of soil water content in the deep soil layers among desert–shrubland–woodland was strongly associated with the increase of groundwater depths. The greatest increase of groundwater depths mainly occurred during 2008–2011, while the largest decrease of soil water content took place during the years 2009–2011, with a time-lag in response to increase in groundwater depths. This study provides new insight into the long-term dynamics of soil water content in a typical desert oasis ecotone under different landscape components from the influence of overexploiting groundwater that cannot be inferred from a short-term study. The findings demonstrate that the sharp increase of groundwater depths could be the main reason behind the reduction of soil water content in the clay interlayers, and sustainable development of groundwater resources exploitation is very important for the management of desert-oasis ecotone from a long-term perspective.


Koedoe ◽  
2014 ◽  
Vol 56 (1) ◽  
Author(s):  
Robert Buitenwerf ◽  
Andrew Kulmatiski ◽  
Steven I. Higgins

Soil water potential is crucial to plant transpiration and thus to carbon cycling and biosphere–atmosphere interactions, yet it is difficult to measure in the field. Volumetric and gravimetric water contents are easy and cheap to measure in the field, but can be a poor proxy of plant-available water. Soil water content can be transformed to water potential using soil moisture retention curves. We provide empirically derived soil moisture retention curves for seven soil types in the Kruger National Park, South Africa. Site-specific curves produced excellent estimates of soil water potential from soil water content values. Curves from soils derived from the same geological substrate were similar, potentially allowing for the use of one curve for basalt soils and another for granite soils. It is anticipated that this dataset will help hydrologists and ecophysiologists understand water dynamics, carbon cycling and biosphere–atmosphere interactions under current and changing climatic conditions in the region.


Sign in / Sign up

Export Citation Format

Share Document