Upper-ocean stratification of the NE South China Sea during the last 35 ka: Implications from oxygen isotope records from planktonic foraminifera

Author(s):  
Tzu-Chun Wang ◽  
Andrew Tien-Shun Lin ◽  
Horng-Sheng Mii ◽  
Chorng-Shern Horng ◽  
Christophe Colin

<p>The sedimentation rate in the northeastern South China Sea (SCS) is high and it therefore offers an opportunity for a high-resolution paleoceanographic study. This study is based on high-resolution AMS <sup>14</sup>C dating on forams and oxygen isotope data of two planktonic foraminifera species (<em>Globigerinoides ruber</em> and <em>Neogloboquadrina dutertrei</em>) from the sediment core, MD18-3568, collected from the northeastern SCS, to reconstruct upper-ocean stratification since 35 ka.</p><p>The marine sediment core MD18-3568 is located on the accretionary wedge off SW Taiwan at a water depth of 1,315 m, the whole core is dominated by hemipelagic sediments and is of 20.7 m in length. Samples for AMS <sup>14</sup>C dating were selected at roughly 2 ka interval with a total of 16 samples. The ages show a continuously younging-upward trend with bottom of this core around 35,000 years BP. Samples for high-resolution oxygen isotope measurements were selected at a nominal 500-year age interval. The difference in δ<sup>18</sup>O between <em>G. ruber</em> (mixed layer dwelling species) and <em>N. dutertrei</em> (thermocline dwelling species) is used to reconstruct the upper ocean stratification with large difference indicating significant ocean stratification and vice versa. The results show moderate upper ocean stratification during 35-24 ka, and it became less stratified during the Last Glacial Maximum (LGM, 23-19 ka). During the deglacial stage, the stratification gradually became stronger until the early Holocene (12-9 ka), and it has kept strong upper-ocean stratification since 9 ka. Literature has documented less rainfall intensity during the LGM and heavy rainfall during the Holocene in southern Taiwan. We interpret the upper-ocean stratification in the NE South China Sea near Taiwan is linked to the amount of freshwater inputs from Taiwan. Less Taiwan freshwater input during the LGM led to a weak stratified upper ocean and a large amount of freshwater input from Taiwan led to a strong upper-ocean stratification during the Holocene.</p>

2020 ◽  
Author(s):  
Ning Zhao ◽  
Hubert Vonhof ◽  
Liviu Giosan ◽  
Ralf Schiebel ◽  
Gerald Haug

<p>Most paleoceanographic studies using planktic foraminifera focus on annual means, but seasonal signals buried by the analyses of lumped specimens could be very valuable. Surface ocean feedbacks on climate change may be more significant in the seasonal realm than annual mean in the northern South China Sea, a region being strongly affected by Asian monsoons and tropical cyclones. Here we use oxygen isotope measurements on individual specimens of surface and subsurface planktic foraminiferal species to reconstruct surface seasonality and seasonal upper ocean stratification in this region. Many studies have shown that the thermocline was deeper in the tropical Pacific during the Pliocene than the Pleistocene, but the mechanism remains unclear. Several processes could lead to changes in the upper ocean stratification, such as changes in sea surface temperature and upper ocean mixing by tropical cyclones. Our results show that the upper ocean stratification was weaker during the Late Pliocene than the Early Pleistocene, with the change more significant in summer than winter, while no systematic offset is observed in the surface seasonality. The observations suggest that enhanced mixing by tropical cyclones might be the major cause of the deeper thermocline during the Pliocene.</p>


2011 ◽  
Vol 79 (1-2) ◽  
pp. 15-23 ◽  
Author(s):  
Hui-Ling Lin ◽  
David Der-Duen Sheu ◽  
Yih Yang ◽  
Wen-Chen Chou ◽  
Guo-Wei Hung

Sign in / Sign up

Export Citation Format

Share Document