scholarly journals Marine organic matter in the remote environment of the Cape Verde Islands – An introduction and overview to the MarParCloud campaign

Author(s):  
Manuela van Pinxteren ◽  
Khanneh Wadinga Fomba ◽  
Nadja Triesch ◽  
Heike Wex ◽  
Xianda Gong ◽  
...  

<p>The project MarParCloud (marine biological production, organic aerosol particles and marine clouds: a process chain) aims at achieving a better understanding of the biological production of organic matter (OM)in the oceans, its export into marine aerosol particles and finally its ability to act as ice and cloud condensation nuclei (INP and CCN). The core of MarParCloud comprised a field campaign at the Cape Verde Atmosphere Observatory (CVAO) in autumn 2017, where a variety of chemical, physical, biological and meteorological approaches were applied. The investigations included concerted measurements of the bulk water, the Sea Surface Microlayer (SML), ambient aerosol particles on the ground (30 m a.s.l.) and in mountain heights (744 m) as well as cloud water. Important aspects of the ocean atmosphere Interactions focusing on marine OM have been addressed through detailed observation and modeling approaches.</p><p>Key variables comprised the chemical characterization of the atmospherically relevant OM components (e.g. lipids, proteins, sugars) in the ocean and the atmosphere as well as measurements of INP and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analysed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modelling studies supported the experimental analysis.</p><p>Here we show the proof of concept of the connection between organic matter emission from the ocean to the atmosphere and up to the cloud level. A link between the ocean and the atmosphere was clearly observed as (i) the particles measured at the surface are well mixed within the marine boundary layer up to cloud level and (ii) ocean-derived compounds can be found in the aerosol particles at mountain height and in the cloud water. The organic measurements will be implemented in a new source function for the oceanic emission of OM. However, from a perspective of particle number concentrations, the marine contributions to both CCN and INP are rather limited.</p>

2019 ◽  
Author(s):  
Manuela van Pinxteren ◽  
Khanneh Wadinga Fomba ◽  
Nadja Triesch ◽  
Christian Stolle ◽  
Oliver Wurl ◽  
...  

Abstract. The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims at improving our understanding of the genesis, modification and impact of marine organic matter (OM), from its biological production, via its export to marine aerosol particles and, finally, towards its ability to act as ice nucleating particles (INP) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September/October 2017 formed the core of this project that was jointly performed with the project (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INP and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analysed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modelling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation and coarse mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level as derived from chemical analysis and atmospheric transfer modelling results denote an influence of marine emissions on cloud formation. However, INP measurements indicated also a significant contribution of other non-marine sources to the local INP concentration or strong enrichment processes during upward transport. Lipids, sugar-like compounds, UV absorbing humic-like substances and low molecular weight neutral components were important organic compounds in the seawater and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modelling to better understand transfer patterns, mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we do see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, marine contributions to both CCN and INP are rather limited.


2020 ◽  
Vol 20 (11) ◽  
pp. 6921-6951 ◽  
Author(s):  
Manuela van Pinxteren ◽  
Khanneh Wadinga Fomba ◽  
Nadja Triesch ◽  
Christian Stolle ◽  
Oliver Wurl ◽  
...  

Abstract. The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September–October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation- and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean–atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecular-weight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited.


2019 ◽  
Author(s):  
Xianda Gong ◽  
Heike Wex ◽  
Manuela van Pinxteren ◽  
Nadja Triesch ◽  
Khanneh Wadinga Fomba ◽  
...  

Abstract. Ice nucleating particles (INPs) in the troposphere can form ice in clouds via heterogeneous ice nucleation. Yet, atmospheric number concentrations of INPs (NINP) are not well characterized and although there is some understanding of their sources, it is still unclear to what extend different sources contribute, nor if all sources are known. In this work, we examined properties of INPs at Cape Verde from different sources, the oceanic sea surface microlayer (SML) and underlying water (ULW), the atmosphere close to both sea and cloud level as well as cloud water. Both enrichment and depletion of NINP in SML compared to ULW were observed. The enrichment factor (EF) varied from roughly 0.4 to 11, and there was no clear trend in EF with temperature. NINP in PM10 sampled at Cape Verde Atmospheric Observatory (CVAO) at any particular temperature spanned around 1 order of magnitude below −15 °C, and about 2 orders of magnitude at warmer temperatures (>−12 °C). NINP in PM1 were generally lower than those in PM10 at CVAO. About 83 ± 22 %, 67 ± 18 % and 77 ± 14 % (median ± standard deviation) of INPs had a diameter > 1 µm at ice activation temperatures of −12, −15, and −18 °C, respectively. Among the 17 PM10 samples at CVAO, three PM10 filters showed elevated NINP at warm temperatures, e.g., above 0.01 std L−1 at −10 °C. However, for NINP in PM1 at CVAO, this is not the case. At these higher temperatures, often biological particles have been found to be ice active. Consequently, the difference in NINP between PM1 and PM10 at CVAO, suggests that biological ice active particles were present in the super-micron size range. NINP in PM10 at CVAO was found to be similar to that on Monte Verde (MV, at 744 m a.s.l.) during non-cloud events. During cloud events, most INPs on MV were activated to cloud droplets. When highly ice active particles were present in PM10 filters at CVAO, they were not observed in PM10 filters on MV, but in cloud water samples, instead. This is direct evidence that these INPs which are likely biological are activated to cloud droplets during cloud events. In general, Cape Verde was often affected by dust from the Saharan desert during our measurement. For the observed air masses, atmospheric NINP in air fit well to the concentrations observed in cloud water. When comparing concentrations of both sea salt and INPs in both seawater and PM10 filters, it can be concluded that sea spray aerosol (SSA) only contributed a minor fraction to the atmospheric NINP. Therefore it can be said that, unless there would be a significant enrichment of NINP during the formation of SSA particles, NINP was mainly dominated by mineral dust at cold temperatures with few contributions from possible biological particles at warmer temperatures.


2020 ◽  
Author(s):  
Nadja Triesch ◽  
Manuela van Pinxteren ◽  
Sanja Frka ◽  
Christian Stolle ◽  
Tobias Spranger ◽  
...  

Abstract. Measurements of lipids as representative species for different lipid classes in the marine environment have been performed to characterize their oceanic sources and their transfer from the ocean into the atmosphere to marine aerosol particles. To this end, a set of lipid classes (hydrocarbons (HC), fatty acid methyl esters (ME), free fatty acids (FFA), alcohols (ALC), 1,3-diacylglycerols (1,3 DG), 1,2-diacylglycerols (1,2 DG), monoacylglycerols (MG), wax esters (WE), triacylglycerols (TG), phospholipids (PP) including phosphatidylglycerols (PG), phosphatidylethanolamine (PE), phosphatidylcholines (PC), glycolipids (GL) including sulfoquinovosyldiacylglycerols (SQDG), monogalactosyl-diacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG) and sterols (ST)) is investigated in both the dissolved and particulate fraction in seawater, differentiated between underlying water (ULW) and the sea surface microlayer (SML), and in ambient submicron aerosol particle samples (PM1) at the Cape Verde Atmospheric Observatory (CVAO) applying concerted measurements. The different lipids are found in all marine compartments but in different compositions. At this point, a certain variability is observed for the concentration of dissolved (∑DLULW: 39.8–128.5 μg L−1, ∑DLSML: 55.7–121.5 μg L−1) and particulate (∑PLULW: 36.4–93.5 μg L−1, ∑PLSML: 61.0–118.1 μg L−1) lipids in seawater of the tropical North Atlantic Ocean along the campaign. Only slight SML enrichments are observed for the lipids with an enrichment factor EFSML of 1.1–1.4 (DL) and 1.0–1.7 (PL). On PM1 aerosol particles, a total lipid concentration between 75.2–219.5 ng m−3 (averaged: 119.9 ng m−3) is measured with high atmospheric concentration of TG (averaged: 21.9 ng m−3) as a potential indicator for freshly emitted sea spray. Besides phytoplankton sources, bacteria influence the lipid concentrations in seawater and on the aerosol particles, so that the phytoplankton tracer (chlorophyll-a) cannot sufficiently explain the lipid abundance. The concentration and enrichment of lipids in the SML is not related to physicochemical properties describing the surface activity. For aerosol, however, the high enrichment of lipids (as a sum) corresponds well with the consideration of their high surface activity, thus the EFaer (enrichment factor on submicron aerosol particles compared to SML) ranges between 9 × 104–7 × 105. Regarding the single lipid groups on the aerosol particles, a weak relation between EFaer and lipophilicity (expressed by the KOW value) was identified, which was absent for the SML. However, overall simple physico-chemical descriptors are not sufficient to fully explain the transfer of lipids. As our findings show that additional processes such as formation and degradation influence the ocean-atmosphere transfer of both OM in general and of lipids in particular, they have to be considered in OM transfer models. Moreover, our data suggest that the extend of enrichment of lipid classes constituents on the aerosol particles might be related to the distribution of the lipid within the bubble-air-water-interface. Lipids, which are preferably arranged within the bubble interface, namely TG and ALC, are transferred to the aerosol particles to the highest extend. Finally, the connection between ice nucleation particles (INP) in seawater, which are active already at higher temperatures (−10 °C to −15 °C), and the lipid classes PE and FFA suggests that lipids formed in the ocean have the potential to contribute to (biogenic) INP activity when transferred to the atmosphere.


Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 66 ◽  
Author(s):  
Luisa Galgani ◽  
Steven Loiselle

Plastic particles are ubiquitous in the marine environment. Given their low density, they have the tendency to float on the sea surface, with possible impacts on the sea surface microlayer (SML). The SML is an enriched biofilm of marine organic matter, that plays a key role in biochemical and photochemical processes, as well as controlling gas exchange between the ocean and the atmosphere. Recent studies indicate that plastics can interfere with the microbial cycling of carbon. However, studies on microplastic accumulation in the SML are limited, and their effects on organic matter cycling in the surface ocean are poorly understood. To explore potential dynamics in this key ocean compartment, we ran a controlled experiment with standard microplastics in the surface and bulk water of a marine monoculture. Bacterial abundance, chromophoric dissolved organic matter (CDOM), and oxygen concentrations were measured. The results indicate an accumulation of CDOM in the SML and immediate underlying water when microplastic particles are present, as well as an enhanced oxygen consumption. If extrapolated to a typical marine environment, this indicates that alterations in the quality and reactivity of the organic components of the SML could be expected. This preliminary study shows the need for a more integrated effort to our understanding the impact of microplastics on SML functioning and marine biological processes.


2020 ◽  
Vol 20 (3) ◽  
pp. 1451-1468 ◽  
Author(s):  
Xianda Gong ◽  
Heike Wex ◽  
Manuela van Pinxteren ◽  
Nadja Triesch ◽  
Khanneh Wadinga Fomba ◽  
...  

Abstract. Ice-nucleating particles (INPs) in the troposphere can form ice in clouds via heterogeneous ice nucleation. Yet, atmospheric number concentrations of INPs (NINP) are not well characterized, and, although there is some understanding of their sources, it is still unclear to what extend different sources contribute or if all sources are known. In this work, we examined properties of INPs at Cabo Verde (a.k.a. Cape Verde) from different environmental compartments: the oceanic sea surface microlayer (SML), underlying water (ULW), cloud water and the atmosphere close to both sea level and cloud level. Both enrichment and depletion of NINP in SML compared to ULW were observed. The enrichment factor (EF) varied from roughly 0.4 to 11, and there was no clear trend in EF with ice-nucleation temperature. NINP values in PM10 sampled at Cape Verde Atmospheric Observatory (CVAO) at any particular ice-nucleation temperature spanned around 1 order of magnitude below −15 ∘C, and about 2 orders of magnitude at warmer temperatures (>-12 ∘C). Among the 17 PM10 samples at CVAO, three PM10 filters showed elevated NINP at warm temperatures, e.g., above 0.01 L−1 at −10 ∘C. After heating samples at 95 ∘C for 1 h, the elevated NINP at the warm temperatures disappeared, indicating that these highly ice active INPs were most likely biological particles. INP number concentrations in PM1 were generally lower than those in PM10 at CVAO. About 83±22 %, 67±18 % and 77±14 % (median±standard deviation) of INPs had a diameter >1 µm at ice-nucleation temperatures of −12, −15 and −18 ∘C, respectively. PM1 at CVAO did not show such elevated NINP at warm temperatures. Consequently, the difference in NINP between PM1 and PM10 at CVAO suggests that biological ice-active particles were present in the supermicron size range. NINP in PM10 at CVAO was found to be similar to that on Monte Verde (MV, at 744 m a.s.l.) during noncloud events. During cloud events, most INPs on MV were activated to cloud droplets. When highly ice active particles were present in PM10 filters at CVAO, they were not observed in PM10 filters on MV but in cloud water samples instead. This is direct evidence that these INPs, which are likely biological, are activated to cloud droplets during cloud events. For the observed air masses, atmospheric NINP values in air fit well to the concentrations observed in cloud water. When comparing concentrations of both sea salt and INPs in both seawater and PM10 filters, it can be concluded that sea spray aerosol (SSA) only contributed a minor fraction to the atmospheric NINP. This latter conclusion still holds when accounting for an enrichment of organic carbon in supermicron particles during sea spray generation as reported in literature.


2013 ◽  
Vol 13 (23) ◽  
pp. 11791-11802 ◽  
Author(s):  
M. van Pinxteren ◽  
H. Herrmann

Abstract. An analytical method for the determination of the alpha dicarbonyls glyoxal (GLY) and methylglyoxal (MGLY) from seawater and marine aerosol particles is presented. The method is based on derivatization with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine (PFBHA) reagent, solvent extraction and GC-MS (SIM) analysis. The method showed good precision (RSD < 10%), sensitivity (detection limits in the low ng L−1 range), and accuracy (good agreement between external calibration and standard addition). The method was applied to determine GLY and MGLY in oceanic water sampled during the Polarstern cruise ANT XXVII/4 from Capetown to Bremerhaven in spring 2011. GLY and MGLY were determined in the sea surface microlayer (SML) of the ocean and corresponding bulk water (BW) with average concentrations of 228 ng L−1 (GLY) and 196 ng L−1 (MGLY). The results show a significant enrichment (factor of 4) of GLY and MGLY in the SML. Furthermore, marine aerosol particles (PM1) were sampled during the cruise and analyzed for GLY (average concentration 0.19 ng m−3) and MGLY (average concentration 0.15 ng m−3). On aerosol particles, both carbonyls show a very good correlation with oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. Concentrations of GLY and MGLY in seawater and on aerosol particles were correlated to environmental parameters such as global radiation, temperature, distance to the coastline and biological activity. There are slight hints for a photochemical production of GLY and MGLY in the SML (significant enrichment in the SML, higher enrichment at higher temperature). However, a clear connection of GLY and MGLY to global radiation as well as to biological activity cannot be concluded from the data. A slight correlation between GLY and MGLY in the SML and in aerosol particles could be a hint for interactions, in particular of GLY, between seawater and the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document