scholarly journals Plastic Accumulation in the Sea Surface Microlayer: An Experiment-Based Perspective for Future Studies

Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 66 ◽  
Author(s):  
Luisa Galgani ◽  
Steven Loiselle

Plastic particles are ubiquitous in the marine environment. Given their low density, they have the tendency to float on the sea surface, with possible impacts on the sea surface microlayer (SML). The SML is an enriched biofilm of marine organic matter, that plays a key role in biochemical and photochemical processes, as well as controlling gas exchange between the ocean and the atmosphere. Recent studies indicate that plastics can interfere with the microbial cycling of carbon. However, studies on microplastic accumulation in the SML are limited, and their effects on organic matter cycling in the surface ocean are poorly understood. To explore potential dynamics in this key ocean compartment, we ran a controlled experiment with standard microplastics in the surface and bulk water of a marine monoculture. Bacterial abundance, chromophoric dissolved organic matter (CDOM), and oxygen concentrations were measured. The results indicate an accumulation of CDOM in the SML and immediate underlying water when microplastic particles are present, as well as an enhanced oxygen consumption. If extrapolated to a typical marine environment, this indicates that alterations in the quality and reactivity of the organic components of the SML could be expected. This preliminary study shows the need for a more integrated effort to our understanding the impact of microplastics on SML functioning and marine biological processes.

2015 ◽  
Vol 12 (13) ◽  
pp. 10579-10619 ◽  
Author(s):  
A. Engel ◽  
L. Galgani

Abstract. The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air–sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air–sea exchange processes.


1988 ◽  
Vol 25 (3) ◽  
pp. 243-263 ◽  
Author(s):  
J.C. Marty ◽  
V. Ẑutić ◽  
R. Precali ◽  
A. Saliot ◽  
B. Ćosović ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Theresa Barthelmeß ◽  
Florian Schütte ◽  
Anja Engel

Major uncertainties in air-sea gas flux parameterizations may arise from a yet unpredictable sea surface microlayer (SML). Its influence on gas exchange is twofold as organic matter, in particular surfactants, on one side and organisms enriched in the SML on the other can alter air-sea gas fluxes. However, spatial heterogeneity of the SML and its potential consequences for gas exchange are not well understood. This study examines the SML’s surfactant pool and the dynamics of microbial enrichment across the sharp hydrological front of a newly upwelled filament off Mauritania. The front was marked by a distinct decrease in temperature and salinity compared to the stratified water column outside the filament. Distinct chemical and microbial SML properties were observed and associated with the filament. Overall, organic matter in the SML was significantly higher concentrated inside the filament and in equivalence to the underlying water. Degradation indices derived from total amino acids (TAA) composition indicated production of fresh organic matter inside and increased degradation outside the filament. Moreover, a shift in the microbial community was observed, for instance Synechococcus spp. prevailed outside the filament. Autotrophic and heterotrophic microorganisms preferably colonized the SML outside the filament. Organic matter enrichment in the SML depended largely on the chemical nature of biomolecules. Total organic carbon (TOC), total nitrogen and total combined carbohydrates were only slightly enriched while glucose, TAA and surfactants were considerably enriched in the SML. Surfactant concentration was positively correlated to TAA, in particular to arginine and glutamic acid, indicating that fresh organic matter components enhanced surface activity. Further, TOC and surfactant concentration correlated significantly (r2 = 0.47, p-value < 0.001). The lower limit of this linear correlation hits approximately the lowest TOC concentration expected within the global surface ocean. This suggests that surfactants are primarily derived from autochthonous production and most refractory components are excluded. Using a previously established relationship between surfactants and CO2 gas exchange (Pereira et al., 2018), we estimated that surfactants suppressed gas exchange by 12% inside the filament. This could be of relevance for freshly upwelled filaments, which are often supersaturated in greenhouse gases.


2016 ◽  
Vol 13 (4) ◽  
pp. 989-1007 ◽  
Author(s):  
Anja Engel ◽  
Luisa Galgani

Abstract. The sea-surface microlayer (SML) is at the uppermost surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air–sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50 µm thick SML and from the underlying water (ULW),  ∼  20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s−1. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air–sea exchange processes.


2015 ◽  
Vol 173 ◽  
pp. 234-243 ◽  
Author(s):  
Sotirios Karavoltsos ◽  
Evangelos Kalambokis ◽  
Aikaterini Sakellari ◽  
Marta Plavšić ◽  
Elissavet Dotsika ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document