Shear attenuation and anelastic mechanisms in the central Pacific upper mantle

Author(s):  
Zhitu Ma ◽  
Colleen Dalton ◽  
Joshua Russell ◽  
James Gaherty ◽  
Greg Hirth ◽  
...  

<p>We determine the mantle attenuation (1/Q) structure beneath 70 Myr seafloor in the central Pacific. We use long-period (33-100 sec) Rayleigh waves recorded by the NoMelt array of broadband ocean-bottom seismometers. After the removal of tilt and compliance noise, we are able to measure Rayleigh wave phase and amplitude for 125 earthquakes. The compliance correction for ocean wave pressure on the seafloor is particularly important for improving signal-to-noise at periods longer than 55 sec. Attenuation and azimuthally anisotropic phase velocity in the study area are determined by approximating the wavefield as the interference of two plane waves. We find that the amplitude decay of Rayleigh waves across the NoMelt array can be adequately explained using a two-layer model: in the shallow layer, in the deeper layer, and a transition depth at 70 km, although the sharpness of the transition is not well resolved by the Rayleigh wave data. Notably, observed in the NoMelt lithosphere is significantly higher than values in this area from global attenuation models. When compared with lithospheric measured at higher frequency (~3 Hz), the frequency dependence of attenuation is very slight, revising previous interpretations. The effect of anelasticity on shear velocity (V<sub>S</sub>) is estimated from the ratio of observed velocity to the predicted anharmonic value. We use laboratory-based parameters to predict attenuation and velocity-dispersion spectra that result from the superposition of a weakly frequency dependent high-temperature background and an absorption peak. We test a large range of frequencies for the position of the absorption peak (<em>f</em><sub>e</sub>) and determine, at each depth, which values of <em>f</em><sub>e</sub> predict and V<sub>S</sub> that can fit the NoMelt and V<sub>S </sub>values simultaneously. We show that between depths of 60 and 80 km the seismic models require an increase in <em>f</em><sub>e</sub> by at least 3-4 orders of magnitude. Under the assumption that the absorption peak is caused by elastically accommodated grain-boundary sliding, this increase in <em>f</em><sub>e</sub> reflects a decrease in grain-boundary viscosity of 3-4 orders of magnitude. A likely explanation is an increase in the water content of the mantle, with the base of the dehydrated lid located at ~70-km depth.   </p>

Geophysics ◽  
1956 ◽  
Vol 21 (4) ◽  
pp. 939-959 ◽  
Author(s):  
F. F. Evison

Vibration impulses of variable frequency and duration have been generated by means of an electrically excited vibrator and the resulting seismic waves recorded at the ground surface along a 200‐ft traverse. The first arrivals were refractions from the water table and a deeper clay‐siltstone interface, and these checked with the results of a standard refraction survey. The amplitudes of displacement of the refracted waves varied in each case with approximately the inverse square of distance; the critical distance was marked by a discontinuity of amplitude. Two later impulsive arrivals recorded within 50 msec of the first were interpreted respectively as a transformed reflection from 85 ft depth and an ordinary compressional reflection from 200 ft depth. A dispersive Rayleigh wave gave an independent estimate of the shear velocity and thickness of the surface layer. Air‐coupled waves of frequencies 70.8 cps and 330 cps were recorded and have been related to the first‐ and third‐mode Rayleigh waves respectively.


2019 ◽  
Vol 220 (3) ◽  
pp. 1657-1676 ◽  
Author(s):  
N I Adimah ◽  
S Padhy

SUMMARY The unusual complex lithospheric structure of Madagascar is a product of a number of important geological events, including: the Pan-African Orogeny, episodes of Late Cenozoic intraplate volcanism and several phases of deformation and metamorphism. Despite this rich history, its detailed crustal structure remains largely underexplored. Here, we take advantage of the recently obtained data set of the RHUM-RUM (Réunion Hotspot and Upper Mantle–Réunions Unterer Mantel) seismological experiment, in addition to previously available data sets to generate the first Rayleigh wave group velocity maps across the entire island at periods between 5 and 30 s using the ambient noise tomography technique. Prior to preliminary data preparation, data from Ocean Bottom Seismometers are cleaned of compliance and tilt noise. Cross-correlating noise records yielded over 1900 Rayleigh wave cross-correlation functions from which group velocities were measured to perform surface wave tomography. Dispersion curves extracted from group velocity tomographic maps are inverted to compute a 3-D shear velocity model of the region. Our velocity maps have shown relative improvement in imaging the three sedimentary basins in the western third of the island compared to those of previous studies. The Morondava basin southwest of the island is the broadest and contains the thickest sedimentary rocks while the Antsirinana basin at the northern tip is narrowest and thinnest. The lithosphere beneath the island is characterized by a heterogeneous crust which appears thickest at the centre but thins away towards the margins. A combined effect of uneven erosion of the crust and rifting accommodates our observations along the east coast. Average 1-D shear velocity models in six different tectonic units, support the causes of low velocity zones observed in the west coast of the island and reveal an intermediate-to-felsic Precambrian upper and middle crust consistent with findings of previous seismic studies. Our findings, especially at short periods provide new constraints on shallow crustal structure of the main island region.


Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


1983 ◽  
Vol 44 (C9) ◽  
pp. C9-759-C9-764
Author(s):  
E. Bonetti ◽  
A. Cavallini ◽  
E. Evangelista ◽  
P. Gondi

Sign in / Sign up

Export Citation Format

Share Document