Consolidation of Aeolus FMA and FMB datasets in the DSI X-PReSS Consortium: Methodology used to generate Master Datasets and the results that have been achieved

Author(s):  
Nicola Comparetti ◽  
Gianluca Colamussi ◽  
Marta De Laurentis ◽  
Michel Douzal ◽  
Peggy Fischer ◽  
...  

<p>We present the methodology and results of the Aeolus VC01 and L0 FM-A and FM-B datasets consolidation performed by the X-PReSS team as part of the ESA (European Space Agency) Data Service Initiative (DSI) managed by ESA’s Ground Segment Operations Division. The goal of this activity is to generate master datasets and gap lists as well as assess data completeness for both future ESA reprocessing campaigns and data preservation activities. The consolidation was carried out first by removing fully overlapping products, products completely covered by other products (inside) and black-listed products. Secondly, remaining products HDR and DBL files were scanned to detect filename misalignments with specifications, intra-products and inter-products gaps and corrupted products. Ancillary data from several Aeolus facilities (KSAT, DISC, FOS, PDGS) were used for gaps justification and blacklisted products identification. For FM-A VC01, 4219 products were analysed. Out of these, 3927 were classified as Master, 142 as inside, 3 as Duplicates and 147 as Blacklisted. 57 gaps were found. No data corruption was found. No duplicated source packet data was found. Consolidation results are available at ESA and includes: list of gaps with metadata and known justification,  list of duplicated events with metadata, list of Instrument Function IDs with metadata, master dataset list and a list of discarded products including known justification.</p>

Author(s):  
Alberto Lorenzo-Alonso ◽  
Marino Palacios ◽  
Ángel Utanda

Disaster Risk Reduction (DRR) is a high priority on the agenda of main stakeholders involved in sustainable development and Earth Observation (EO) can provide useful, timely and economical information in this context. This short communication outlines the European Space Agency’s (ESA) specific initiative to promote the use and uptake of satellite data in the global development community: ‘Earth Observation for Sustainable Development (EO4SD)’. One activity area under EO4SD is devoted to Disaster Risk Reduction: EO4SD DRR. Within this project, a team of European companies and institutions are tasked to develop EO services for supporting the implementation of DRR in International Financial Institutions’ (IFI) projects. Integration of satellite-borne data and ancillary data to generate insight and actionable information is thereby considered a key factor for improved decision making. To understand and fully account for the essential user requirements (IFI & Client States), engagement with technical leaders is crucial. Fit-for-purpose use of data and comprehensive capacity building eventually ensure scalability and long-term transferability. Future perspectives of EO4SD and DRR regarding mainstreaming are also highlighted.


Author(s):  
SÉRGIO AGOSTINHO ◽  
ANA MOREIRA ◽  
ANDRÉ MARQUES ◽  
JOÃO ARAÚJO ◽  
RICARDO FERREIRA ◽  
...  

Aspect-oriented software development claims to improve several software engineering principles, such as modularization, abstraction and composition. The Aspect for the Space Domain project (ASSD) developed a metadata-driven approach for aspect-oriented requirements analysis. The main objectives of the ASSD project, funded by the European Space Agency , were to study the applicability and usefulness of aspect-orientation for the space domain (ground segment software projects in particular), focusing on the early stages of the software development life cycle. Therefore, this paper describes a rigorous representation for requirements analysis concepts, refines an approach for handling early aspects, and proposes a client/server architecture based on a metadata repository. The ASSD approach has been validated with two space domain case studies.


2021 ◽  
Vol 13 (11) ◽  
pp. 5423-5440
Author(s):  
Luis Guanter ◽  
Cédric Bacour ◽  
Andreas Schneider ◽  
Ilse Aben ◽  
Tim A. van Kempen ◽  
...  

Abstract. The first satellite-based global retrievals of terrestrial sun-induced chlorophyll fluorescence (SIF) were achieved in 2011. Since then, a number of global SIF datasets with different spectral, spatial, and temporal sampling characteristics have become available to the scientific community. These datasets have been useful to monitor the dynamics and productivity of a range of vegetated areas worldwide, but the coarse spatiotemporal sampling and low signal-to-noise ratio of the data hamper their application over small or fragmented ecosystems. The recent advent of the Copernicus Sentinel-5P TROPOMI mission and the high quality of its data products promise to alleviate this situation, as TROPOMI provides daily global measurements at a much denser spatial and temporal sampling than earlier satellite instruments. In this work, we present a global SIF dataset produced from TROPOMI measurements within the TROPOSIF project funded by the European Space Agency. The current version of the TROPOSIF dataset covers the time period between May 2018 and April 2021. Baseline SIF retrievals are derived from the 743–758 nm window. A secondary SIF dataset derived from an extended fitting window (735–758 nm window) is included. This provides an enhanced signal-to-noise ratio at the expense of a higher sensitivity to atmospheric effects. Spectral reflectance spectra at seven 3 nm windows devoid of atmospheric absorption within the 665–785 nm range are also included in the TROPOSIF dataset as an important ancillary variable to be used in combination with SIF. The methodology to derive SIF and ancillary data as well as results from an initial data quality assessment are presented in this work. The TROPOSIF dataset is available through the following digital object identifier (DOI): https://doi.org/10.5270/esa-s5p_innovation-sif-20180501_20210320-v2.1-202104 (Guanter et al., 2021).


2021 ◽  
Author(s):  
Luis Guanter ◽  
Cédric Bacour ◽  
Andreas Schneider ◽  
Ilse Aben ◽  
Tim A. van Kempen ◽  
...  

Abstract. The first satellite-based global retrievals of terrestrial sun-induced chlorophyll fluorescence (SIF) were achieved in 2011. Since then, a number of global SIF datasets with different spectral, spatial and temporal sampling characteristics have become available to the scientific community. These datasets have been useful to monitor the dynamics and productivity of a range of vegetated areas worldwide, but the coarse spatio-temporal sampling and low signal-to-noise ratio of the data hamper their application over small or fragmented ecosystems. The recent advent of the Copernicus Sentinel-5P TROPOMI mission and the high quality of its data products promise to alleviate this situation, as TROPOMI provides daily global measurements at a much denser spatial and temporal sampling than earlier satellite instruments. In this work, we present a global SIF dataset produced from TROPOMI measurements within the TROPOSIF project funded by the European Space Agency. The current version of the TROPOSIF dataset covers the time period between May 2018 and April 2021. Baseline SIF retrievals are derived from the 743–758 nm window. A secondary SIF dataset derived from an extended fitting window (735–758 nm window) is included. This provides an enhanced signal-to-noise ratio at the expense of a higher sensitivity to atmospheric effects. Spectral reflectance spectra at seven 3-nm windows devoid of atmospheric absorption within the 665–785 nm range are also included in the TROPOSIF dataset as an important ancillary variable to be used in combination with SIF. The methodology to derive SIF and ancillary data as well as results from an initial data quality assessment are presented in this work. The TROPOSIF dataset is available through the following Digital Object Identifier (DOI) https://doi.org/10.5270/esa-s5p_innovation-sif-20180501_20210320-v2.1-202104 (Guanter et al., 2021).


Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


1993 ◽  
Vol 137 ◽  
pp. 812-819
Author(s):  
T. Appourchaux ◽  
D. Gough ◽  
P. Hyoyng ◽  
C. Catala ◽  
S. Frandsen ◽  
...  

PRISMA (Probing Rotation and Interior of Stars: Microvariability and Activity) is a new space mission of the European Space Agency. PRISMA is currently in a Phase A study with 3 other competitors. PRISMA is the only ESA-only mission amongst those four and only one mission will be selected in Spring 1993 to become a real space mission.The goal of the Phase A study is to determine whether the payload of PRISMA can be accommodated on a second unit of the X-ray Multi-Mirror (XMM) bus; and whether the budget of the PRISMA mission can be kept below 265 MAU (’88 Economic conditions). The XMM mission is an approved cornerstone and is in a Phase A together with PRISMA.


2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Valeria Mangano ◽  
Melinda Dósa ◽  
Markus Fränz ◽  
Anna Milillo ◽  
Joana S. Oliveira ◽  
...  

AbstractThe dual spacecraft mission BepiColombo is the first joint mission between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) to explore the planet Mercury. BepiColombo was launched from Kourou (French Guiana) on October 20th, 2018, in its packed configuration including two spacecraft, a transfer module, and a sunshield. BepiColombo cruise trajectory is a long journey into the inner heliosphere, and it includes one flyby of the Earth (in April 2020), two of Venus (in October 2020 and August 2021), and six of Mercury (starting from 2021), before orbit insertion in December 2025. A big part of the mission instruments will be fully operational during the mission cruise phase, allowing unprecedented investigation of the different environments that will encounter during the 7-years long cruise. The present paper reviews all the planetary flybys and some interesting cruise configurations. Additional scientific research that will emerge in the coming years is also discussed, including the instruments that can contribute.


Sign in / Sign up

Export Citation Format

Share Document