Expected impact of the 2016 central Italy earthquakes on the local gravity field

Author(s):  
Federica Riguzzi ◽  
Hongbo Tan ◽  
Chong-yang Shen

<p>We have modelled the surface volume and gravity changes caused by the three mainshocks (moment magnitudes Mw 6.0, 5.9, 6.5) occurred during the last seismic period started on 2016, August 24 in central Italy. Our calculations start from the source parameters estimated by the inversion of the largest dataset of InSAR and GNSS observations ever managed in Italy after earthquake occurrences, based on the half-space elastic dislocation theory. The vertical displacements modelled after the 2016 events allow to infer a substantial unbalance between the subsided and uplifted volumes. In particular, we detected ~106∙10<sup>6</sup> m<sup>3</sup> of hangingwall subsidence against ~37∙10<sup>6</sup> m<sup>3</sup> of footwall uplift, that accounts for ~74% of the total volume mobilization. From the ratio between the footwall and total deformed volumes, we have computed an average fault dip of ~47°, in line with the values retrieved by seismological methods. The total gravity variations which affected the study area are of the order of ~1 μGal (1 μGal = 10<sup>−8</sup> ms<sup>−2</sup>) in the far field, and ~170 μGal in the near field.<br>The area affected within a gravity change of 1 μGal is ~140 km long and ~57 km wide, parallel to the Apennines chain. The larger contribution is given by positive variations which account for the tensional style of deformation and larger subsided area.</p>

2019 ◽  
Vol 219 (1) ◽  
pp. 514-521 ◽  
Author(s):  
Y Wang ◽  
K Satake ◽  
R Cienfuegos ◽  
M Quiroz ◽  
P Navarrete

SUMMARY The 2015 Illapel earthquake (Mw 8.3) occurred off central Chile on September 16, and generated a tsunami that propagated across the Pacific Ocean. The tsunami was recorded on tide gauges and Deep-ocean Assessment and Reporting of Tsunami (DART) tsunameters in east Pacific. Near-field and far-field tsunami forecasts were issued based on the estimation of seismic source parameters. In this study, we retroactively evaluate the potentiality of forecasting this tsunami in the far field based solely on tsunami data assimilation from DART tsunameters. Since there are limited number of DART buoys, virtual stations are assumed by interpolation to construct a more complete tsunami wavefront for data assimilation. The comparison between forecasted and observed tsunami waveforms suggests that our method accurately forecasts the tsunami amplitudes and arrival time in the east Pacific. This approach could be a complementary method of current tsunami warning systems based on seismic observations.


Geophysics ◽  
2021 ◽  
pp. 1-49
Author(s):  
Ge Jin ◽  
Frantisek Stanek ◽  
Bin Luo

Microseismic monitoring with surface or downhole geophone arrays has been commonly used in tracking subsurface deformation and fracture networks during hydraulic fracturing operations. Recently, the use of fiber-optic DAS technology has improved microseismic acquisition to a new level with unprecedentedly high spatial resolution and low cost. Deploying fiber-optic cables in horizontal boreholes allows very close observation of these micro-sized earthquakes and captures their full wavefield details. We show that DAS-based microseismic profiles present a seldomly reported near-field strain signal between the P- and S-wave arrivals. This near-field signal shows monotonically increasing (or decreasing) temporal variation, which resembles the previously reported near-field observations of large earthquakes. To understand the near-field strain behavior, we provide a mathematical expression of the analytic normal strain solution that reveals the near-field, intermediate-near-field, intermediate-far-field, and far-field components. Synthetic DAS strain records of hydraulic-fracture-induced microseismic events can be generated using this analytic solution with the Brune source model. The polarity sign patterns of the near-field and far-field terms in these synthetics are linked to the corresponding source mechanism’s radiation patterns. These polarity sign patterns are demonstrated to be sensitive to the source orientations by rotating the moment tensor in different directions. A field data example is compared to the synthetic result and a qualitative match is shown. The microseismic near-field signals detected by DAS have potential value in hydraulic fracture monitoring by providing a means to better constrain microseismic source parameters that characterize the source magnitude, source orientation, and temporal source evolution, and therefore better reflect the geomechanical response of the hydraulically fractured environment in the unconventional reservoirs.


1965 ◽  
Vol 55 (2) ◽  
pp. 277-281 ◽  
Author(s):  
Indra N. Gupta

Abstract Expressions for the horizontal and vertical displacements at the surface of an elastic half space when plane harmonic P or SV waves are incident at any given angle are already known. On the basis of the reciprocity theorem, these expressions are used to obtain “far-field” radiation patterns of P and SV waves due to horizontal and vertical forces applied at the free surface.


1966 ◽  
Vol 56 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Indra N. Gupta

abstract Expressions are derived for the horizontal and vertical displacements at an arbitrary depth within a homogeneous, isotropic, elastic half space when plane harmonic P, SV or SH waves are incident at any given angle. On the basis of the reciprocity theorem, these expressions represent also the far-field polar radiation patterns of P, SV and SH waves due to horizontal and vertical forces applied at a point within the half space. Numerical results for a few selected values of depth are shown for a solid half space.


Geophysics ◽  
1988 ◽  
Vol 53 (5) ◽  
pp. 727-729
Author(s):  
L. C. Bartel ◽  
R. D. Jacobson

We welcome the opportunity to respond to comments by Szarka on our recent paper. The main points he raised on our near‐field correction scheme for controlled‐source audio‐frequency magnetotelluric (CSAMT) data are the application of the correction scheme and the near‐field/far‐field demarcation in the presence of layers and the application in the presence of electrical structure beneath the transmitter location. In our paper, we addressed the application for three‐dimensional electrical structure beneath the receiver location with the transmitter over a homogeneous half‐space. In this reply we wish to clarify these points and point out possible limitations of our correction scheme.


Author(s):  
Mondher Dhaouadi ◽  
M. Mabrouk ◽  
T. Vuong ◽  
A. Ghazel

Sign in / Sign up

Export Citation Format

Share Document