Note on the use of reciprocity theorem for obtaining radiation patterns

1965 ◽  
Vol 55 (2) ◽  
pp. 277-281 ◽  
Author(s):  
Indra N. Gupta

Abstract Expressions for the horizontal and vertical displacements at the surface of an elastic half space when plane harmonic P or SV waves are incident at any given angle are already known. On the basis of the reciprocity theorem, these expressions are used to obtain “far-field” radiation patterns of P and SV waves due to horizontal and vertical forces applied at the free surface.

1966 ◽  
Vol 56 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Indra N. Gupta

abstract Expressions are derived for the horizontal and vertical displacements at an arbitrary depth within a homogeneous, isotropic, elastic half space when plane harmonic P, SV or SH waves are incident at any given angle. On the basis of the reciprocity theorem, these expressions represent also the far-field polar radiation patterns of P, SV and SH waves due to horizontal and vertical forces applied at a point within the half space. Numerical results for a few selected values of depth are shown for a solid half space.


2017 ◽  
Vol 39 (4) ◽  
pp. 365-374
Author(s):  
Pham Chi Vinh ◽  
Tran Thanh Tuan ◽  
Le Thi Hue

This paper is concerned with the propagation of Rayleigh waves in an incompressible orthotropic elastic half-space coated with a thin incompressible orthotropic elastic layer. The main purpose of the paper is to establish an approximate formula for the Rayleigh wave H/V ratio (the ratio between the amplitudes of the horizontal and vertical displacements of Rayleigh waves at the traction-free surface of the layer). First, the relations between the traction amplitude vector and the displacement amplitude vector of Rayleigh waves at two sides of the interface between the layer and the half-space are created using the Stroh formalism and the effective boundary condition method. Then, an approximate formula for the Rayleigh wave H/V ratio of third-order in terms of dimensionless thickness of the layer has been derived by using these relations along with the Taylor expansion of the displacement amplitude vector of the thin layer at its traction-free surface. It is shown numerically that the obtained formula is a good approximate one. It can be used for extracting mechanical properties of thin films from measured values of the  Rayleigh wave H/V ratio.


1969 ◽  
Vol 36 (3) ◽  
pp. 505-515 ◽  
Author(s):  
D. C. Gakenheimer ◽  
J. Miklowitz

The propagation of transient waves in a homogeneous, isotropic, linearly elastic half space excited by a traveling normal point load is investigated. The load is suddenly applied and then it moves rectilinearly at a constant speed along the free surface. The displacements are derived for the interior of the half space and for all load speeds. Wave-front expansions are obtained from the exact solution, in addition to results pertaining to the steady-state displacement field. The limit case of zero load speed is considered, yielding new results for Lamb’s point load problem.


2011 ◽  
Vol 18 (6) ◽  
pp. 827-838 ◽  
Author(s):  
İ. Coşkun ◽  
H. Engin ◽  
A. Özmutlu

The dynamic response of an elastic half-space with a cylindrical cavity in a circular cross-section is analyzed. The cavity is assumed to be infinitely long, lying parallel to the plane-free surface of the medium at a finite depth and subjected to a uniformly distributed harmonic pressure at the inner surface. The problem considered is one of plain strain, in which it is assumed that the geometry and material properties of the medium and the forcing function are constant along the axis of the cavity. The equations of motion are reduced to two wave equations in polar coordinates with the use of Helmholtz potentials. The method of wave function expansion is used to construct the displacement fields in terms of the potentials. The boundary conditions at the surface of the cavity are satisfied exactly, and they are satisfied approximately at the free surface of the half-space. Thus, the unknown coefficients in the expansions are obtained from the treatment of boundary conditions using a collocation least-square scheme. Numerical results, which are presented in the figures, show that the wave number (i.e., the frequency) and depth of the cavity significantly affect the displacement and stress.


Sign in / Sign up

Export Citation Format

Share Document