COnstraining ORographic Drag Effects (COORDE): A model intercomparison of resolved and parametrized orographic drag

Author(s):  
Annelize VanNiekerk ◽  
Irina Sandu

<p>Mountains are know to impact the atmospheric circulation on a variety of spatial scales and through a number of different processes. They exert a drag force on the atmosphere both locally through deflection of the flow and remotely through the generation of atmospheric gravity waves. The degree to which orographic drag parametrizations are able to capture the complex impacts on the circulation from realistic orography in high resolution simulations is examined here. We present results from COnstraing ORographic Drag Effects (COORDE), a project joint with the Working Group on Numerical Experimentation (WGNE) and Global Atmospheric System Studies (GASS). The aim of COORDE is to validate parametrized orographic drag in several operational models in order to determine both systematic and model dependent errors over complex terrain. To do this, we compare the effects of parametrized orographic drag on the circulation with those of the resolved orographic drag, deduced from km-scale resolution simulations which are able to resolve orographic low-level blocking and gravity-wave effects. We show that there is a large spread in the impact from parametrized orographic drag between the models but that the impact from resolved orography is much more robust. This is encouraging as it means that the km-scale simulations can be used to evaluate the caveats of the existing orographic drag parametrizations. Analysis of the parametrized drag tendencies and stresses shows that much of the spread in the parametrized orographic drag comes from differences in the partitioning of the drag into turbulent and flow blocking drag near the surface. What is more, much of the model error over complex terrain can be attributed to deficiencies in the parametrized orographic drag, particularly coming from the orographic gravity wave drag.</p>

2010 ◽  
Vol 67 (8) ◽  
pp. 2537-2546 ◽  
Author(s):  
John F. Scinocca ◽  
Bruce R. Sutherland

Abstract A new effect related to the evaluation of momentum deposition in conventional parameterizations of orographic gravity wave drag (GWD) is considered. The effect takes the form of an adjustment to the basic-state wind about which steady-state wave solutions are constructed. The adjustment is conservative and follows from wave–mean flow theory associated with wave transience at the leading edge of the wave train, which sets up the steady solution assumed in such parameterizations. This has been referred to as “self-acceleration” and it is shown to induce a systematic lowering of the elevation of momentum deposition, which depends quadratically on the amplitude of the wave. An expression for the leading-order impact of self-acceleration is derived in terms of a reduction of the critical inverse Froude number Fc, which determines the onset of wave breaking for upwardly propagating waves in orographic GWD schemes. In such schemes Fc is a central tuning parameter and typical values are generally smaller than anticipated from conventional wave theory. Here it is suggested that self-acceleration may provide some of the explanation for why such small values of Fc are required. The impact of Fc on present-day climate is illustrated by simulations of the Canadian Middle Atmosphere Model.


2014 ◽  
Vol 27 (14) ◽  
pp. 5601-5610 ◽  
Author(s):  
Michael Sigmond ◽  
Theodore G. Shepherd

Abstract Following recent findings, the interaction between resolved (Rossby) wave drag and parameterized orographic gravity wave drag (OGWD) is investigated, in terms of their driving of the Brewer–Dobson circulation (BDC), in a comprehensive climate model. To this end, the parameter that effectively determines the strength of OGWD in present-day and doubled CO2 simulations is varied. The authors focus on the Northern Hemisphere during winter when the largest response of the BDC to climate change is predicted to occur. It is found that increases in OGWD are to a remarkable degree compensated by a reduction in midlatitude resolved wave drag, thereby reducing the impact of changes in OGWD on the BDC. This compensation is also found for the response to climate change: changes in the OGWD contribution to the BDC response to climate change are compensated by opposite changes in the resolved wave drag contribution to the BDC response to climate change, thereby reducing the impact of changes in OGWD on the BDC response to climate change. By contrast, compensation does not occur at northern high latitudes, where resolved wave driving and the associated downwelling increase with increasing OGWD, both for the present-day climate and the response to climate change. These findings raise confidence in the credibility of climate model projections of the strengthened BDC.


2012 ◽  
Vol 69 (3) ◽  
pp. 802-818 ◽  
Author(s):  
Charles McLandress ◽  
Theodore G. Shepherd ◽  
Saroja Polavarapu ◽  
Stephen R. Beagley

Abstract Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAM-DAS reveal systematic negative values in the stratosphere near 60°S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-running CMAM simulations to assess the impact of extra orographic GWD at 60°S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.


2009 ◽  
Vol 22 (10) ◽  
pp. 2726-2742 ◽  
Author(s):  
Tiffany A. Shaw ◽  
Michael Sigmond ◽  
Theodore G. Shepherd ◽  
John F. Scinocca

Abstract The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated. In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface. In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Song-You Hong ◽  
Jimy Dudhia ◽  
Young-Joon Kim

This paper describes the implementation of the orographic gravity wave drag (GWDO) processes induced by subgrid-scale orography in the global version of the Weather Research and Forecasting (WRF) model. The sensitivity of the model simulated climatology to the representation of shortwave radiation and the addition of the GWDO processes is investigated using the Kim-Arakawa GWDO parameterization and the Goddard, RRTMG (Rapid Radiative Transfer Model for GCMs), and Dudhia shortwave radiation schemes. This sensitivity study is a part of efforts of selecting the physics package that can be useful in applying the WRF model to global and seasonal configuration. The climatology is relatively well simulated by the global WRF; the zonal mean zonal wind and temperature structures are reasonably represented with the Kim-Arakawa GWDO scheme using the Goddard and RRTMG shortwave schemes. It is found that the impact of the shortwave radiation scheme on the modeled atmosphere is pronounced in the upper atmospheric circulations above the tropopause mainly due to the ozone heating. The scheme that excludes the ozone process suffers from a distinct cold bias in the stratosphere. Moreover, given the improper thermodynamic environment conditions by the shortwave scheme, the role of the GWDO process is found to be limited.


Author(s):  
E. M. Volodin

A technique is proposed for evolution equation that estimates the impact of different terms in phase change for oscillations with different frequencies. The impact is normalized in such way that sum of impacts for all terms equals 1. Proposed technique is applied for study of quasibiannual oscillation of zonal wind in equatorial stratosphere produced in 500 year preindustrial run with climate model of Institute of Numerical Mathematics RAS. The impact of nonorographic and orographic gravity wave drag and advection by zonal mean vertical wind to the phase change of model quasibiannual oscillation. It is shown that nonorographic wave drag is main mechanism responsible for phase change (the impact equals 1.58), vertical advection slows down phase change (impact is –0.74), and the impacts of other terms are small.


Sign in / Sign up

Export Citation Format

Share Document