Gravity-wave drag parametrization over complex terrain: The effect of critical-level absorption in directional wind-shear

1995 ◽  
Vol 121 (525) ◽  
pp. 1005-1021 ◽  
Author(s):  
Glenn Shutts
2015 ◽  
Vol 33 (4) ◽  
pp. 483-504 ◽  
Author(s):  
M. Ern ◽  
P. Preusse ◽  
M. Riese

Abstract. It is known that atmospheric dynamics in the tropical stratosphere have an influence on higher altitudes and latitudes as well as on surface weather and climate. In the tropics, the dynamics are governed by an interplay of the quasi-biennial oscillation (QBO) and semiannual oscillation (SAO) of the zonal wind. The QBO is dominant in the lower and middle stratosphere, and the SAO in the upper stratosphere/lower mesosphere. For both QBO and SAO the driving by atmospheric waves plays an important role. In particular, the role of gravity waves is still not well understood. In our study we use observations of the High Resolution Dynamics Limb Sounder (HIRDLS) satellite instrument to derive gravity wave momentum fluxes and gravity wave drag in order to investigate the interaction of gravity waves with the SAO. These observations are compared with the ERA-Interim reanalysis. Usually, QBO westward winds are much stronger than QBO eastward winds. Therefore, mainly gravity waves with westward-directed phase speeds are filtered out through critical-level filtering already below the stratopause region. Accordingly, HIRDLS observations show that gravity waves contribute to the SAO momentum budget mainly during eastward wind shear, and not much during westward wind shear. These findings confirm theoretical expectations and are qualitatively in good agreement with ERA-Interim and other modeling studies. In ERA-Interim most of the westward SAO driving is due to planetary waves, likely of extratropical origin. Still, we find in both observations and ERA-Interim that sometimes westward-propagating gravity waves may contribute to the westward driving of the SAO. Four characteristic cases of atmospheric background conditions are identified. The forcings of the SAO in these cases are discussed in detail, supported by gravity wave spectra observed by HIRDLS. In particular, we find that the gravity wave forcing of the SAO cannot be explained by critical-level filtering alone; gravity wave saturation without critical levels being reached is also important.


2005 ◽  
Vol 62 (7) ◽  
pp. 2394-2413 ◽  
Author(s):  
Charles McLandress ◽  
John F. Scinocca

Abstract A comparison is undertaken of the response of a general circulation model (GCM) to the nonorographic gravity wave drag parameterizations of Hines, Warner and McIntyre, and Alexander and Dunkerton. The analysis is restricted to a comparison of each parameterization’s nonlinear dissipation mechanism since, in principle, this is the only component that differs between the schemes. This is achieved by developing a new, more general parameterization that can represent each of these dissipation mechanisms, while keeping all other aspects of the problem identical. The GCM simulations reveal differences in the climatological response to the three dissipation mechanisms. These differences are documented for both tropopause and surface launch elevations of the parameterized waves. The simulations also reveal systematic differences in the height at which momentum is deposited. This behavior is investigated further in a set of experiments designed to reduce these systematic differences, while leaving the details of the dissipation mechanisms unaltered. These sensitivity experiments demonstrate that it is possible to obtain nearly identical responses from all three mechanisms, which indicates that the GCM response is largely insensitive to the precise details of the dissipation mechanisms. This finding is supported by an additional experiment in which the nonlinear dissipation mechanisms are turned off and critical-level filtering is left to act as the only source of dissipation. In this experiment, critical-level filtering effectively replaces the nonlinear dissipation mechanism, producing a nearly identical response. The results of this study suggest that climate modeling efforts would potentially benefit more from the refinement of other aspects of the parameterization problem, such as the properties of the launch spectrum, than they have benefited from the refinement of dissipation mechanisms.


2020 ◽  
Author(s):  
Annelize VanNiekerk ◽  
Irina Sandu

<p>Mountains are know to impact the atmospheric circulation on a variety of spatial scales and through a number of different processes. They exert a drag force on the atmosphere both locally through deflection of the flow and remotely through the generation of atmospheric gravity waves. The degree to which orographic drag parametrizations are able to capture the complex impacts on the circulation from realistic orography in high resolution simulations is examined here. We present results from COnstraing ORographic Drag Effects (COORDE), a project joint with the Working Group on Numerical Experimentation (WGNE) and Global Atmospheric System Studies (GASS). The aim of COORDE is to validate parametrized orographic drag in several operational models in order to determine both systematic and model dependent errors over complex terrain. To do this, we compare the effects of parametrized orographic drag on the circulation with those of the resolved orographic drag, deduced from km-scale resolution simulations which are able to resolve orographic low-level blocking and gravity-wave effects. We show that there is a large spread in the impact from parametrized orographic drag between the models but that the impact from resolved orography is much more robust. This is encouraging as it means that the km-scale simulations can be used to evaluate the caveats of the existing orographic drag parametrizations. Analysis of the parametrized drag tendencies and stresses shows that much of the spread in the parametrized orographic drag comes from differences in the partitioning of the drag into turbulent and flow blocking drag near the surface. What is more, much of the model error over complex terrain can be attributed to deficiencies in the parametrized orographic drag, particularly coming from the orographic gravity wave drag.</p>


2008 ◽  
Vol 47 (11) ◽  
pp. 2777-2796 ◽  
Author(s):  
Todd P. Lane ◽  
Robert D. Sharman

Abstract Deep moist convection generates turbulence in the clear air above and around developing clouds, penetrating convective updrafts and mature thunderstorms. This turbulence can be due to shearing instabilities caused by strong flow deformations near the cloud top, and also to breaking gravity waves generated by cloud–environment interactions. Turbulence above and around deep convection is an important safety issue for aviation, and improved understanding of the conditions that lead to out-of-cloud turbulence formation may result in better turbulence avoidance guidelines or forecasting capabilities. In this study, a series of high-resolution two- and three-dimensional model simulations of a severe thunderstorm are conducted to examine the sensitivity of above-cloud turbulence to a variety of background flow conditions—in particular, the above-cloud wind shear and static stability. Shortly after the initial convective overshoot, the above-cloud turbulence and mixing are caused by local instabilities in the vicinity of the cloud interfacial boundary. At later times, when the convection is more mature, gravity wave breaking farther aloft dominates the turbulence generation. This wave breaking is caused by critical-level interactions, where the height of the critical level is controlled by the above-cloud wind shear. The strength of the above-cloud wind shear has a strong influence on the occurrence and intensity of above-cloud turbulence, with intermediate shears generating more extensive regions of turbulence, and strong shear conditions producing the most intense turbulence. Also, more stable above-cloud environments are less prone to turbulence than less stable situations. Among other things, these results highlight deficiencies in current turbulence avoidance guidelines in use by the aviation industry.


2004 ◽  
Vol 61 (21) ◽  
pp. 2638-2643 ◽  
Author(s):  
Miguel A. C. Teixeira ◽  
Pedro M. A. Miranda

Abstract The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic approximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including the pressure, may be calculated analytically.


2010 ◽  
Vol 67 (8) ◽  
pp. 2537-2546 ◽  
Author(s):  
John F. Scinocca ◽  
Bruce R. Sutherland

Abstract A new effect related to the evaluation of momentum deposition in conventional parameterizations of orographic gravity wave drag (GWD) is considered. The effect takes the form of an adjustment to the basic-state wind about which steady-state wave solutions are constructed. The adjustment is conservative and follows from wave–mean flow theory associated with wave transience at the leading edge of the wave train, which sets up the steady solution assumed in such parameterizations. This has been referred to as “self-acceleration” and it is shown to induce a systematic lowering of the elevation of momentum deposition, which depends quadratically on the amplitude of the wave. An expression for the leading-order impact of self-acceleration is derived in terms of a reduction of the critical inverse Froude number Fc, which determines the onset of wave breaking for upwardly propagating waves in orographic GWD schemes. In such schemes Fc is a central tuning parameter and typical values are generally smaller than anticipated from conventional wave theory. Here it is suggested that self-acceleration may provide some of the explanation for why such small values of Fc are required. The impact of Fc on present-day climate is illustrated by simulations of the Canadian Middle Atmosphere Model.


Author(s):  
Branden Katona ◽  
Paul Markowski

AbstractStorms crossing complex terrain can potentially encounter rapidly changing convective environments. However, our understanding of terrain-induced variability in convective stormenvironments remains limited. HRRR data are used to create climatologies of popular convective storm forecasting parameters for different wind regimes. Self-organizing maps (SOMs) are used to generate six different low-level wind regimes, characterized by different wind directions, for which popular instability and vertical wind shear parameters are averaged. The climatologies show that both instability and vertical wind shear are highly variable in regions of complex terrain, and that the spatial distributions of perturbations relative to the terrain are dependent on the low-level wind direction. Idealized simulations are used to investigate the origins of some of the perturbations seen in the SOM climatologies. The idealized simulations replicate many of the features in the SOM climatologies, which facilitates analysis of their dynamical origins. Terrain influences are greatest when winds are approximately perpendicular to the terrain. In such cases, a standing wave can develop in the lee, leading to an increase in low-level wind speed and a reduction in vertical wind shear with the valley lee of the plateau. Additionally, CAPE tends to be decreased and LCL heights are increased in the lee of the terrain where relative humidity within the boundary layer is locally decreased.


2018 ◽  
Vol 54 (S1) ◽  
pp. 385-402 ◽  
Author(s):  
Hyun-Joo Choi ◽  
Ji-Young Han ◽  
Myung-Seo Koo ◽  
Hye-Yeong Chun ◽  
Young-Ha Kim ◽  
...  

2015 ◽  
Vol 15 (14) ◽  
pp. 7797-7818 ◽  
Author(s):  
N. P. Hindley ◽  
C. J. Wright ◽  
N. D. Smith ◽  
N. J. Mitchell

Abstract. Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.


Sign in / Sign up

Export Citation Format

Share Document