Monitoring environmental effects of a deep-sea mining test in shallow water

Author(s):  
Henko de Stigter ◽  
Sabine Haalboom ◽  
Christian Mohn ◽  
Thomas Vandorpe ◽  
Marck Smit ◽  
...  

<p>Concerns about future access to strategic raw materials for the high-tech industry have led to a renewed interest in mining of mineral resources from the deep-sea as a potential alternative for land-based mining. Polymetallic nodules, especially abundant in the eastern equatorial Pacific Ocean in water depths of 4000-6000 m, are a likely target of future deep-sea mining. However, many questions exist about the environmental sustainability of deep-sea mining, as it would involve the removal of hard substrate, disturbance of the surface sediment layer and dispersion of mobilised sediment over large areas of seabed adjacent to the mining sites. Anticipating on full-scale industrial mining tests, which are likely to start in the near future in the deep Pacific Ocean, we tried approaches for environmental monitoring of mining activities during two industry field tests in relatively shallow water offshore southern Spain, carried out in the framework of the European Blue Nodules project. The aim of these field tests was to assess technical and environmental performance of a scaled polymetallic nodule mining vehicle developed by the Dutch shipbuilder and maritime technology provider Royal IHC. Although the tests were performed in only 300 m water depth, much less than the depth where future deep-sea mining will take place, the weakly stratified bottom water, tide-dominated near-bed currents with mean magnitude around 5-10 cm s<sup>-1</sup>, and gently sloping seabed covered with fine muddy sediment are fairly comparable to operational conditions in the deep-sea. The plume of suspended sediment mobilised by the mining vehicle, considered to represent a major environmental pressure which may extend far beyond the actual mining area, was monitored with turbidity sensors deployed with ship-operated ROV and CTD, as well as in a static array of moored sensors. It was found that the generated sediment plume extended not more than 2 m above the seabed close to the disturbance (< 100 m), but increased in height with distance away from the disturbance site. Turbidity decreased rapidly with increasing distance from the source, but a distinct signal could still be distinguished above background turbidity at 350 m away from the source. In this near-coast setting, plume monitoring suffered significant interference by bottom trawling activities in neighbouring areas. The monitoring setup proved to be well designed and the findings on the plume size and dispersion can be significantly extrapolated to account for a more realistic mining situation. Seabed surveys with ROV-based video and scanning sonar showed that the tracks of the test vehicle, exerting an average pressure of 3 kPa on the seabed, left impressions of 4±0.8 cm deep in the surface sediment. In sediment cores collected from the path of the vehicle, geotechnical testing showed an increase in undrained shear strength and bearing capacity, as compared to undisturbed sites, indicating compaction of the surface sediment. Surveys revealed ubiquitous signs of bottom trawling, including furrows of approximately 10 cm deep produced by trawl doors. </p>

Author(s):  
Hanieh Saeedi ◽  
Marianna Simoes ◽  
Angelika Brandt

The Northwestern (NW) Pacific Ocean lies in one of the most productive, speciose, and diverse regions of the World Ocean, and includes several shallow-water oceanic islands and deep-sea basins of varying depth, hydrology, and degree of isolation. The adjacent Arctic Ocean areas include the northern Bering and southern Chukchi Seas of the Arctic Ocean with short food chains and shallow depths characterizing high productivity areas. Despite its magnitude and relevance, characterization of species diversity and community composition patterns in the NW Pacific Ocean remains poorly explored and largely unknown. Here we attempt to discover how geographic boundaries and depth shape current community assemblages and delimit species distribution ranges and richness using open access data. We also show how endemicity and community composition vary between tropical and temperate NW Pacific and the adjacent Arctic Ocean considering sampling bias. The Eastern Philippine Sea was the hotspot of species richness in the NW Pacific and its adjacent Arctic Ocean even when accounting for sampling bias. The lowest species richness was observed in Papau. Despite high species richness in the Eastern Philippine Sea, the Yellow Sea and Gulf of Tonkin had the highest endemicity rates (ca. 60%) among all other ecoregions. Endemicity ranged 20–40% across 19 ecoregions. Chordata, Arthropoda, and Mollusca contributed more than 50% to the total community composition in the NW Pacific where as Arthropoda, Annelida, and Mollusca were the dominant taxa shaping ca. 82% of the Arctic Ocean community. Pelagic species richness was higher than the benthic one in both shallow-water and deep-sea regions of the NW Pacific Ocean. However, in the shallow and deep Arctic Ocean, most of the taxa were benthic excluding the deep Kara Sea where pelagic deep-sea species dominated the whole community. Two significantly distinctive clusters (North and South clusters) were classified based on species richness similarity analysis in this area including ecoregions of the (1) Arctic Ocean and North NW Pacific, and (2) Mid to South NW Pacific.


2019 ◽  
Author(s):  
Laura Haffert ◽  
Matthias Haeckel ◽  
Henko de Stigter ◽  
Felix Janßen

Abstract. Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts because in addition to the nodules, benthic fauna as well as the upper reactive sediment layer is removed through the mining operation, and blanketed by resettling material from the suspended sediment plume. This study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event by applying prognostic simulations based on an updated diagenetic background model and validated with novel (micro)-biological data. It was found that the recovery strongly depends on the impact type; complete removal of the reactive surface sediment reduces seafloor nutrient fluxes over centuries, while geochemical processes after resuspension and mixing of the surface sediment are near pre-impact state one year after the disturbance. Furthermore, the geochemical impact in the DISCOL area would be mitigated to some degree by a clay-bound Fe(II)-reaction layer, impeding the downward diffusion of oxygen, thus stabilizing the redox zonation of the sediment during transient post-impact recovery. The interdisciplinary (geochemical, numerical and biological) approach highlights the closely linked nature of benthic ecosystem functions, e.g. through bioturbation, microbial biomass and nutrient fluxes, which is also of great importance for the system recovery.


2020 ◽  
Vol 17 (10) ◽  
pp. 2767-2789 ◽  
Author(s):  
Laura Haffert ◽  
Matthias Haeckel ◽  
Henko de Stigter ◽  
Felix Janssen

Abstract. Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts because not only nodules but also benthic fauna and the upper reactive sediment layer are removed through the mining operation and blanketed by resettling material from the suspended sediment plume. This study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event by applying prognostic simulations based on an updated diagenetic background model and validated against novel data on microbiological processes. It was found that the recovery strongly depends on the impact type; complete removal of the reactive surface sediment reduces benthic release of nutrients over centuries, while geochemical processes after resuspension and mixing of the surface sediment are near the pre-impact state 1 year after the disturbance. Furthermore, the geochemical impact in the DISturbance and reCOLonization (DISCOL) experiment area would be mitigated to some degree by a clay-bound Fe(II)-reaction layer, impeding the downward diffusion of oxygen, thus stabilizing the redox zonation of the sediment during transient post-impact recovery. The interdisciplinary (geochemical, numerical and biological) approach highlights the closely linked nature of benthic ecosystem functions, e.g. through bioturbation, microbial biomass and nutrient fluxes, which is also of great importance for the system recovery. It is, however, important to note that the nodule ecosystem may never recover to the pre-impact state without the essential hard substrate and will instead be dominated by different faunal communities, functions and services.


Zootaxa ◽  
2018 ◽  
Vol 4422 (3) ◽  
pp. 301 ◽  
Author(s):  
BORIS SIRENKO

Sixteen deep-sea polyplacophoran species are reported in this article, fifteen of which were found for the first time in the waters of Taiwan. Two of these species, Leptochiton taiwanensis n. sp. and L. wui n. sp., are described as new to science. Several of these species are distributed near Japan and in other areas of the western Pacific Ocean. Eight of the reported species live and feed on sunken wood. A survey of the polyplacophorans of Taiwan has also been conducted. The updated list of chitons collected near Taiwan at all depths contains 34 species. Seventeen of these species are shallow-water and seventeen species are deep-water chitons. 


Sign in / Sign up

Export Citation Format

Share Document