Grain size control of sediment composition variability still not resolved

Author(s):  
Tomas Matys Grygar ◽  
Karel Hron ◽  
Ondrej Babek ◽  
Kamila Facevicova ◽  
Reneta Talska ◽  
...  

<p>The compositional data analysis (CoDA), unbiased interpretation of geochemical composition of sediments and soils, must correctly treat several major challenges, well-known to environmental geochemists but still improperly handled. Among them, dilution by autochthonous components, e.g., biogenic carbonates or organic matter, and grain size effects are the most relevant. These effects cannot be eliminated by sample pre-treatment, e.g. by sieving or chemical extraction of diluting components, but they can be handled by implementation of interelement relationships and particle size distribution functions. The challenges of CoDA are principally twofold: geochemical/mineralogical and mathematical/statistical. Geochemical/mineralogical challenge is that complete deciphering of sediment composition would need knowledge of mineral composition (and stoichiometry of individual minerals and their content of major and trace elements) in each grain size fraction. This information can be achieved by analysis of finely divided grain-size fractions of studied sediments, which is enormously demanding, in particular in the silt and clay size fractions; that approach can, however, be found in scientific papers. Mathematical/statistical challenge consists in need to respect nature of compositional data (relative nature, i.e. scale dependence, data closure – content of each component impacts all other components), polymodal data distributions, including the cases when “outliers” (in terms of Gaussian distribution) are a regular part of compositional datasets. Compositional data are best treated using log-ratio methodology and robust algorithms (not based on the least squares fitting methods), which are not familiar to geoscientists.</p><p>Most traditional geochemical approaches to CoDA are based on empirical knowledge, models, and assumptions which are hardly proven, e.g. a tracer conservativeness or its grain size invariance, which are not easy tested independently. Most novel mathematical/statistical tools are too abstract and computations too complicate for common geochemists. The bottleneck here is to convert geochemical tasks to formal mathematical/statistical terms and develop novel tools, having chance to become routinely used in future.</p><p>We studied composition of 483 sediment samples from floodplain and reservoir impacted by historical pollution from chemical industry in Martktredwitz, Germany. We will demonstrate mathematically/statistically correct routes to (1) distinguishing anthropogenic portion of risk elements in sediments of variable grain size and (2) characterisation of grain size control of sediment composition. Task (1) is best achieved by robust regression with log-ratios of concentrations, which still needs certain a priori geochemical expertise. Task ad (2) is best achieved by the use of a functional analysis of particle size distributions (densities) based on Bayes spaces. To support our recommendations, insufficiency of PCA to solve task (1) will be demonstrated.</p>

2021 ◽  
Author(s):  
Mo Zhang ◽  
Wenjiao Shi

Abstract. Digital soil mapping of soil particle-size fractions (PSFs) using log-ratio methods is a widely used technique. As a hybrid interpolator, regression kriging (RK) provides a way to improve prediction accuracy. However, there have been few comparisons with other techniques when RK is applied for compositional data, and it is not known if its performance based on different balances of isometric log-ratio (ILR) transformation is robust. Here, we compared the generalized linear model (GLM), random forest (RF), and their hybrid patterns (RK) using different transformed data based on three ILR balances, with 29 environmental covariables (ECs) for the prediction of soil PSFs in the upper reaches of the Heihe River Basin (HRB), China. The results showed that the RF performed best, with more accurate predictions, but the GLM produced a more unbiased prediction. As a hybrid interpolator, RK was recommended because it widened the data ranges of the prediction values, and modified the bias and accuracy of most models, especially the RF. The prediction maps generated from RK revealed more details of the soil sampling points than the other models. Different data distributions were produced for the three ILR balances. Using the most abundant component of the compositional data as the first component of the permutations was not considered to be the right choice because it produced the worst performance. Based on the relative abundance of the components, we recommend that the focus should be on data distribution. This study provides a reference for the mapping of soil PSFs combined with transformed data at the regional scale.


2020 ◽  
Author(s):  
Mo Zhang ◽  
Wenjiao Shi

Abstract. Digital soil mapping of soil particle-size fractions (PSFs) using log-ratio methods has been widely used. As a hybrid interpolator, regression kriging (RK) is an alternative way to improve prediction accuracy. However, there is still a lack of systematic comparison and recommendation when RK was applied for compositional data. Whether performance based on different balances of isometric log-ratio (ILR) transformation is robust. Here, we systematically compared the generalized linear model (GLM), random forest (RF), and their hybrid pattern (RK) using different balances of ILR transformed data of soil PSFs with 29 environmental covariables for prediction of soil PSFs on the upper reaches of the Heihe River Basin. The results showed that RF had better performance with more accurate predictions, but GLM had a more unbiased prediction. For the hybrid interpolators, RK was recommended because it widened data ranges of the prediction results, and modified bias and accuracy for most models, especially for RF. The drawback, however, existed due to the data distributions and model algorithms. Moreover, prediction maps generated from RK demonstrated more details of soil sampling points. Three ILR transformed data based on sequential binary partitions (SBP) made different distributions, and it is not recommended to use the most abundant component of compositions as the first component of permutations. This study can reference spatial simulation of soil PSFs combined with environmental covariables and transformed data at a regional scale.


RSC Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 1055-1065
Author(s):  
Ming Tian ◽  
Yahui Liu ◽  
Wei Zhao ◽  
Weijing Wang ◽  
Lina Wang ◽  
...  

Herein, to control the particle size of metatitanic acid produced via titanium thermal hydrolysis in sulfuric–chloric acid (SCMA) solutions, the relationship between its grain size and hydrolysis parameters are discussed, and the corresponding methematical model is discussed using the experimental data.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
No-Wook Park ◽  
Dong-Ho Jang

This paper compares the predictive performance of different geostatistical kriging algorithms for intertidal surface sediment facies mapping using grain size data. Indicator kriging, which maps facies types from conditional probabilities of predefined facies types, is first considered. In the second approach, grain size fractions are first predicted using cokriging and the facies types are then mapped. As grain size fractions are compositional data, their characteristics should be considered during spatial prediction. For efficient prediction of compositional data, additive log-ratio transformation is applied before cokriging analysis. The predictive performance of cokriging of the transformed variables is compared with that of cokriging of raw fractions in terms of both prediction errors of fractions and facies mapping accuracy. From a case study of the Baramarae tidal flat, Korea, the mapping method based on cokriging of log-ratio transformation of fractions outperformed the one based on cokriging of untransformed fractions in the prediction of fractions and produced the best facies mapping accuracy. Indicator kriging that could not account for the variation of fractions within each facies type showed the worst mapping accuracy. These case study results indicate that the proper processing of grain size fractions as compositional data is important for reliable facies mapping.


Author(s):  
Ernest L. Hall ◽  
Lee E. Rumaner ◽  
Mark G. Benz

The intermetallic compound Nb3Sn is a type-II superconductor of interest because it has high values of critical current density Jc in high magnetic fields. One method of forming this compound involves diffusion of Sn into Nb foil containing small amounts of Zr and O. In order to maintain high values of Jc, it is important to keep the grain size in the Nb3Sn as small as possible, since the grain boundaries act as flux-pinning sites. It has been known for many years that Zr and O were essential to grain size control in this process. In previous work, we have shown that (a) the Sn is transported to the Nb3Sn/Nb interface by liquid diffusion along grain boundaries; (b) the Zr and O form small ZrO2 particles in the Nb3Sn grains; and (c) many very small Nb3Sn grains nucleate from a single Nb grain at the reaction interface. In this paper we report the results of detailed studies of the Nb3Sn/Nb3Sn, Nb3Sn/Nb, and Nb3Sn/ZrO2 interfaces.


2021 ◽  
pp. 138770
Author(s):  
Linlin Guan ◽  
Leiming Yu ◽  
Lijuan Wu ◽  
Shuyu Zhang ◽  
Yuting Lin ◽  
...  

1995 ◽  
Vol 102 (12) ◽  
pp. 5082-5087 ◽  
Author(s):  
Thomas Palberg ◽  
Wolfgang Mönch ◽  
Jürgen Schwarz ◽  
Paul Leiderer

2017 ◽  
Vol 544 ◽  
pp. 306-311 ◽  
Author(s):  
Shunsuke Tanaka ◽  
Kenta Okubo ◽  
Koji Kida ◽  
Miki Sugita ◽  
Takahiko Takewaki

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. WB201-WB211 ◽  
Author(s):  
S. Buchanan ◽  
J. Triantafilis ◽  
I. O. A. Odeh ◽  
R. Subansinghe

The soil particle-size fractions (PSFs) are one of the most important attributes to influence soil physical (e.g., soil hydraulic properties) and chemical (e.g., cation exchange) processes. There is an increasing need, therefore, for high-resolution digital prediction of PSFs to improve our ability to manage agricultural land. Consequently, use of ancillary data to make cheaper high-resolution predictions of soil properties is becoming popular. This approach is known as “digital soil mapping.” However, most commonly employed techniques (e.g., multiple linear regression or MLR) do not consider the special requirements of a regionalized composition, namely PSF; (1) should be nonnegative (2) should sum to a constant at each location, and (3) estimation should be constrained to produce an unbiased estimation, to avoid false interpretation. Previous studies have shown that the use of the additive log-ratio transformation (ALR) is an appropriate technique to meet the requirements of a composition. In this study, we investigated the use of ancillary data (i.e., electromagnetic (EM), gamma-ray spectrometry, Landsat TM, and a digital elevation model to predict soil PSF using MLR and generalized additive models (GAM) in a standard form and with an ALR transformation applied to the optimal method (GAM-ALR). The results show that the use of ancillary data improved prediction precision by around 30% for clay, 30% for sand, and 7% for silt for all techniques (MLR, GAM, and GAM-ALR) when compared to ordinary kriging. However, the ALR technique had the advantage of adhering to the special requirements of a composition, with all predicted values nonnegative and PSFs summing to unity at each prediction point and giving more accurate textural prediction.


Sign in / Sign up

Export Citation Format

Share Document