Remote Sensing based comparative analysis of cotton irrigation and water productivity in Pakistan, Turkey and Uzbekistan

Author(s):  
Muhammad Usman ◽  
Talha Mahmood ◽  
Christopher Conrad

<p>Textile products made with cotton produced in Pakistan, Turkey, and Uzbekistan are largely imported to European markets. This is responsible for high virtual water imports from these countries and thus puts immense pressure on their water resources, which is further extravagated due to climate change and population growth. The solution to combat the issue, on one hand, is to cut water usage for cotton irrigation, and on the other hand, to increase water productivity. The biggest challenge in this regard is the correct quantification of consumptive water use, cotton yield estimation and crop water productivities at a finer spatial resolution on regional levels, which is now possible by utilizing remote sensing (RS) data and approaches. It can also facilitate comparing regions of interest, like in this study, Pakistan, Turkey, and Uzbekistan by utilizing similar data and techniques. For the current study, MODIS data along with various climatic variables were utilized for the estimation of consumptive water use and cotton yield estimation by employing SEBAL and Light Use Efficiency (LUE) models, respectively. These estimations were then used for working out water productivities of different regions of selected countries as case studies. The results show that the study area in Turkey achieved maximum cotton water productivity (i.e. 0.75 - 1.2 kg.m<sup>-3</sup>) followed by those in Uzbekistan (0.05 – 0.85 kg.m<sup>-3</sup>) and Pakistan (0.04 – 0.23 kg.m<sup>-3</sup>).  The variability is higher for Uzbekistan possibly due to agricultural transition post-soviet-union era. In the case of Pakistan, the lower cotton water productivities are mainly attributed to lower crop yields (400 – 1200 kg.ha<sup>-1</sup>) in comparison to Turkey (3850 – 5800 kg.ha<sup>-1</sup>) and Uzbekistan (450 – 2500 kg.ha<sup>-1</sup>). Although the highest crop water productivity is achieved for the study region in Turkey, there is still potential for further improvement by introducing on-farm water management. In the case of the other two countries, especially for Pakistan, major improvements are possible through maximizing crop yields. The next steps include comparisons of the results in economic out-turns.</p>

2013 ◽  
Vol 44 ◽  
pp. 95-102
Author(s):  
Saad Ahmad Alghariani

AbstractThe looming water crisis in Libya necessitates taking immediate action to reduce the agricultural water demand that consumes more than 80% of the water supplies. The available information on water use efficiency and crop water productivity reveals that this proportion can be effectively reduced while maintaining the same, if not more, total agricultural production at the national level. Crop water productivity, which is depressingly low, can be doubled through implementing several measures including relocating all major agricultural crops among different hydroclimatic zones and growth seasons; crop selection based on comparative production advantages; realisation of the maximum genetically determined crop yields; and several other measures of demand water management. There is an urgent need to establish the necessary institutional arrangements that can effectively formulate and implement these measures as guided by agricultural research and extension services incorporating all beneficiaries and stakeholders in the process.


2020 ◽  
Vol 12 (22) ◽  
pp. 9535
Author(s):  
Muhammad Usman ◽  
Talha Mahmood ◽  
Christopher Conrad ◽  
Habib Ullah Bodla

Water crises are becoming severe in recent times, further fueled by population increase and climate change. They result in complex and unsustainable water management. Spatial estimation of consumptive water use is vital for performance assessment of the irrigation system using Remote Sensing (RS). For this study, its estimation is done using the Soil Energy Balance Algorithm for Land (SEBAL) approach. Performance indicators including equity, adequacy, and reliability were worked out at various spatiotemporal scales. Moreover, optimization and sustainable use of water resources are not possible without knowing the factors mainly influencing consumptive water use of major crops. For that purpose, random forest regression modelling was employed using various sets of factors for site-specific, proximity, and cropping system. The results show that the system is underperforming both for Kharif (i.e., summer) and Rabi (i.e., winter) seasons. Performance indicators highlight poor water distribution in the system, a shortage of water supply, and unreliability. The results are relatively good for Rabi as compared to Kharif, with an overall poor situation for both seasons. Factors importance varies for different crops. Overall, distance from canal, road density, canal density, and farm approachability are the most important factors for explaining consumptive water use. Auditing of consumptive water use shows the potential for resource optimization through on-farm water management by the targeted approach. The results are based on the present situation without considering future changes in canal water supply and consumptive water use under climate change.


2021 ◽  
Vol 42 (17) ◽  
pp. 6628-6669
Author(s):  
Indrani Choudhury ◽  
B.K. Bhattacharya ◽  
R. Eswar ◽  
M. Sekhar

2019 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Poolad Karimi ◽  
Bhembe Bongani ◽  
Megan Blatchford ◽  
Charlotte de Fraiture

Remote sensing techniques have been shown, in several studies, to be an extremely effective tool for assessing the performance of irrigated areas at various scales and diverse climatic regions across the world. Open access, ready-made, global ET products were utilized in this first-ever-countrywide irrigation performance assessment study. The study aimed at identifying ‘bright spots’, the highest performing sugarcane growers, and ‘hot spots’, or low performing sugarcane growers. Four remote sensing-derived irrigation performance indicators were applied to over 302 sugarcane growers; equity, adequacy, reliability and crop water productivity. The growers were segmented according to: (i) land holding size or grower scale (ii) management regime, (iii) location of the irrigation schemes and (iv) irrigation method. Five growing seasons, from June 2005 to October 2009, were investigated. The results show while the equity of water distribution is high across all management regimes and locations, adequacy and reliability of water needs improvement in several locations. Given the fact that, in general, water supply was not constrained during the study period, the observed issues with adequacy and reliability of irrigation in some of the schemes were mostly due to poor scheme and farm level water management practices. Sugarcane crop water productivity showed the highest variation among all the indicators, with Estate managed schemes having the highest CWP at 1.57 kg/m3 and the individual growers recording the lowest CWP at 1.14 kg/m3, nearly 30% less. Similarly center pivot systems showed to have the highest CWP at 1.63 kg/m3, which was 30% higher than the CWP in furrow systems. This study showcases the applicability of publicly available global remote sensing products for assessing performance of the irrigated crops at the local level in several aspects.


1986 ◽  
Vol 7 (2) ◽  
pp. 128-144 ◽  
Author(s):  
S.O. Ojo ◽  
M. Ijioma ◽  
A.O. Ojo

2018 ◽  
Vol 10 (12) ◽  
pp. 1867 ◽  
Author(s):  
Bruno Aragon ◽  
Rasmus Houborg ◽  
Kevin Tu ◽  
Joshua B. Fisher ◽  
Matthew McCabe

Remote sensing based estimation of evapotranspiration (ET) provides a direct accounting of the crop water use. However, the use of satellite data has generally required that a compromise between spatial and temporal resolution is made, i.e., one could obtain low spatial resolution data regularly, or high spatial resolution occasionally. As a consequence, this spatiotemporal trade-off has tended to limit the impact of remote sensing for precision agricultural applications. With the recent emergence of constellations of small CubeSat-based satellite systems, these constraints are rapidly being removed, such that daily 3 m resolution optical data are now a reality for earth observation. Such advances provide an opportunity to develop new earth system monitoring and assessment tools. In this manuscript we evaluate the capacity of CubeSats to advance the estimation of ET via application of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) retrieval model. To take advantage of the high-spatiotemporal resolution afforded by these systems, we have integrated a CubeSat derived leaf area index as a forcing variable into PT-JPL, as well as modified key biophysical model parameters. We evaluate model performance over an irrigated farmland in Saudi Arabia using observations from an eddy covariance tower. Crop water use retrievals were also compared against measured irrigation from an in-line flow meter installed within a center-pivot system. To leverage the high spatial resolution of the CubeSat imagery, PT-JPL retrievals were integrated over the source area of the eddy covariance footprint, to allow an equivalent intercomparison. Apart from offering new precision agricultural insights into farm operations and management, the 3 m resolution ET retrievals were shown to explain 86% of the observed variability and provide a relative RMSE of 32.9% for irrigated maize, comparable to previously reported satellite-based retrievals. An observed underestimation was diagnosed as a possible misrepresentation of the local surface moisture status, highlighting the challenge of high-resolution modeling applications for precision agriculture and informing future research directions. .


Water Policy ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 886-907 ◽  
Author(s):  
Brian D. Richter ◽  
James D. Brown ◽  
Rachel DiBenedetto ◽  
Adrianna Gorsky ◽  
Emily Keenan ◽  
...  

As water scarcity worsens globally, there is growing interest in finding ways to reduce water consumption, and for reallocating water savings to other uses including environmental restoration. Because irrigated agriculture is responsible for more than 90% of all consumptive water use in water-scarce regions, much attention is being focused on opportunities to save water on irrigated farms. At the same time, many recent journal articles have expressed concern that claims of water-saving potential in irrigation systems lack technical credibility, or are at least exaggerated, due to failures to properly account for key elements of water budgets such as return flows. Critics have also asserted that opportunities for reallocating irrigation savings to other uses are limited because any freed-up water is taken up by other farmers. A comprehensive literature and internet survey was undertaken to identify well-documented studies of water-saving strategies in irrigated agriculture, as well as a review of case studies in which water savings have been successfully transferred to other uses. Our findings suggest that there is in fact considerable potential to reduce consumptive water use in irrigation systems when proper consideration is given to water budget accounting, and those savings can be beneficially reallocated to other purposes.


Sign in / Sign up

Export Citation Format

Share Document