scholarly journals Ozone and related gaseous pollutants in the boundary layer of eastern China: Overview of the recent measurements at a rural site

2001 ◽  
Vol 28 (12) ◽  
pp. 2373-2376 ◽  
Author(s):  
T. Wang ◽  
Vincent T. F. Cheung ◽  
M. Anson ◽  
Y. S. Li
2020 ◽  
Author(s):  
Jinhui Gao

<p>Comprehensive measurements were conducted at the summit of Mount (Mt.) Huang, a rural site located in eastern China during the summer of 2011. They observed that ozone showed pronounced diurnal variations with high concentrations at night and low values during daytime. The Weather Research and Forecasting with Chemistry (WRF-Chem) model was applied to simulate the ozone concentrations at Mt. Huang in June 2011. With processes analysis and online ozone tagging method we coupled into the model system, the causes of this diurnal pattern and the contributions from different source regions were investigated. Our results showed that boundary layer diurnal cycle played an important role in driving the ozone diurnal variation. Further analysis showed that the negative contribution of vertical mixing was significant, resulting in the ozone decrease during the daytime. In contrast, ozone increased at night owing to the significant positive contribution of advection. This shifting of major factor between vertical mixing and advection formed this diurnal variation. Ozone source apportionment results indicated that approximately half was provided by inflow effect of ozone from outside the model domain (O<sub>3-INFLOW</sub>) and the other half was formed by ozone precursors (O<sub>3-PBL</sub>) emitted in eastern, central, and southern China. In the O<sub>3-PBL</sub>, 3.0% of the ozone was from Mt. Huang reflecting the small local contribution (O<sub>3-LOC</sub>) and the non-local contributions (O<sub>3-NLOC</sub>) accounted for 41.6%, in which ozone from the southerly regions contributed significantly, for example, 9.9% of the ozone originating from Jiangxi, representing the highest geographical contributor. Because the origin and variation of O<sub>3-NLOC</sub> was highly related to the diurnal movements in boundary layer, the similar diurnal patterns between O<sub>3-NLOC</sub> and total ozone both indicated the direct influence of O<sub>3-NLOC</sub> and the importance of boundary layer diurnal variations in the formation of such distinct diurnal ozone variations at Mt. Huang.</p>


2008 ◽  
Vol 8 (24) ◽  
pp. 7543-7555 ◽  
Author(s):  
Y. J. He ◽  
I. Uno ◽  
Z. F. Wang ◽  
P. Pochanart ◽  
J. Li ◽  
...  

Abstract. The impact of the East Asia monsoon on the seasonal behavior of O3 in the boundary layer of Eastern China and the west Pacific region was analyzed for 2004–2006 by means of full-year nested chemical transport model simulations and continuous observational data obtained from three inland mountain sites in central and eastern China and three oceanic sites in the west Pacific region. The basic common features of O3 seasonal behaviors over all the monitoring sites are the pre- and post-monsoon peaks with a summer trough. Such bimodal seasonal patterns of O3 are predominant over the region with strong summer monsoon penetration, and become weaker or even disappear outside the monsoon region. The seasonal/geographical distribution of the pre-defined monsoon index indicated that the East Asia summer monsoon is responsible for the bimodal seasonal O3 pattern, and also partly account for the differences in the O3 seasonal variations between the inland mountain and oceanic sites. Over the inland mountain sites, the O3 concentration increased gradually from the beginning of the year, reached a maximum in June, decreased rapidly to the summer valley in July or August, and then peaked in September or October, thereafter decreased gradually again. Over the oceanic sites, O3 abundance showed a similar increasing trend beginning in January, but then decreased gradually from the end of March, followed by a wide trough with the minimum in July and August and a small peak in October or November. A sensitivity analysis performed by setting China-emission to zero revealed that the chemically produced O3 from China-emission contributed substantially to the O3 abundance, particularly the pre- and post-monsoon O3 peaks, over China mainland. We found that China-emission contributed more than 40% to total boundary layer O3 during summertime (60–70% in July) and accounted for about 40 ppb of each peak value over the inland region if without considering the effect of the nonlinear chemical productions. In contrast, over the oceanic region in the high monsoon index zone, the contribution of China-emission to total boundary layer O3 was always less than 20% (<10 ppb), and less than 10% in summer.


2004 ◽  
Vol 38 (27) ◽  
pp. 4551-4560 ◽  
Author(s):  
H Guo ◽  
T Wang ◽  
I.J Simpson ◽  
D.R Blake ◽  
X.M Yu ◽  
...  

2020 ◽  
Vol 20 (10) ◽  
pp. 5899-5909 ◽  
Author(s):  
Yucong Miao ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
Shuhua Liu

Abstract. Rapid urbanization and industrialization have led to deterioration of air quality in the Beijing–Tianjin–Hebei (BTH) region due to high loadings of PM2.5. Heavy aerosol pollution frequently occurs in winter, in close relation to the planetary boundary layer (PBL) meteorology. To unravel the physical processes that influence PBL structure and aerosol pollution in BTH, this study combined long-term observational data analyses, synoptic pattern classification, and meteorology–chemistry coupled simulations. During the winter of 2017 and 2018, Beijing and Tangshan often experienced heavy PM2.5 pollution simultaneously, accompanied by strong thermal inversion aloft. These concurrences of pollution in different cities were primarily regulated by the large-scale synoptic conditions. Using principal component analysis with geopotential height fields at the 850 hPa level during winter, two typical synoptic patterns associated with heavy pollution in BTH were identified. One pattern is characterized by a southeast-to-north pressure gradient across BTH, and the other is associated with high pressure in eastern China. Both synoptic types feature warmer air temperature at 1000 m a.g.l., which could suppress the development of the PBL. Under these unfavorable synoptic conditions, aerosols can modulate PBL structure through the radiative effect, which was examined using numerical simulations. The aerosol radiative effect can significantly lower the daytime boundary layer height through cooling the surface layer and heating the upper part of the PBL, leading to the deterioration of air quality. This PBL–aerosol feedback is sensitive to the aerosol vertical structure, which is more effective when the synoptic pattern can distribute more aerosols to the upper PBL.


2021 ◽  
Vol 126 (8) ◽  
Author(s):  
Y. Ting ◽  
D. Liu ◽  
W. T. Morgan ◽  
J. D. Allan ◽  
H. Coe ◽  
...  

2018 ◽  
Vol 18 (22) ◽  
pp. 16239-16251 ◽  
Author(s):  
Jun Hu ◽  
Yichen Li ◽  
Tianliang Zhao ◽  
Jane Liu ◽  
Xiao-Ming Hu ◽  
...  

Abstract. Severe ozone (O3) pollution episodes plague a few regions in eastern China at certain times of the year, e.g., the Yangtze River Delta (YRD). However, the formation mechanisms, including meteorological factors, contributing to these severe pollution events remain elusive. A severe summer smog stretched over the YRD region from 22 to 25 August 2016. This event displayed hourly surface O3 concentrations that exceeded 300 µg m−3 on 25 August in Nanjing, an urban area in the western YRD. The weather pattern during this period was characterized by near-surface prevailing easterly winds and continuous high air temperatures. The formation mechanism responsible for this O3 pollution episode over the YRD region, particularly the extreme values over the western YRD, was investigated using observation data and by running simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem). The results showed that the extremely high surface O3 concentration in the western YRD area on 25 August was largely due to regional O3 transport in the nocturnal residual layer (RL) and the diurnal change in the atmospheric boundary layer. On 24 August, high O3 levels, with peak values of 220 µg m−3, occurred in the daytime mixing layer over the eastern YRD region. During nighttime from 24 to 25 August, a shallow stable boundary layer formed near the surface which decoupled the RL above it from the surface. Ozone in the decoupled RL remained quite constant, which resulted in an O3-rich “reservoir” forming in this layer. This reservoir persisted due to the absence of O3 consumption from nitrogen oxide (NO) titration or dry deposition during nighttime. The prevailing easterly winds in the lower troposphere governed the regional transport of this O3-rich air mass in the nocturnal RL from the eastern to the western YRD. As the regional O3 transport reached the RL over the western YRD, O3 concentrations in the RL accumulated and rose to 200 µg m−3 over the western Nanjing site during the sunrise hours on 25 August. The development of the daytime convective boundary layer after sunrise resulted in the disappearance of the RL, as the vertical mixing in the convective boundary layer uniformly redistributed O3 from the upper levels via the entrainment of O3-rich RL air down to the O3-poor air at the ground. This net downward transport flux reached up to 35 µg m−3 h−1, and contributed a considerable surface O3 accumulation, resulting in severe daytime O3 pollution during the summer smog event on 25 August in the western YRD region. The mechanism of regional O3 transport through the nocturnal RL revealed in this study has great implications regarding understanding O3 pollution and air quality change.


Sign in / Sign up

Export Citation Format

Share Document