Constraining the process of intracontinental subduction: implications from petrology and Lu-Hf geochronology of eclogites from the Austroalpine Nappes

Author(s):  
Irena Miladinova ◽  
Nikolaus Froitzheim ◽  
Thorsten Nagel ◽  
Marian Janák ◽  
Raúl Fonseca ◽  
...  

<p>The nucleation of subduction zone remains a widely discussed topic in the global tectonics. The prevalent view is that subduction starts within an oceanic plate. However, there is strong evidence that subduction can also be initiated within a continent. To test this hypothesis, we combine petrology, isotope geochronology and thermodynamic phase equilibrium modelling on eclogites from the Austroalpine Nappes of the Eastern Alps.</p><p>The high- and ultrahigh-pressure rocks occur in a ~400 km long belt from the Texel Complex in the west to the Sieggraben Unit in the east without remnants of Mesozoic oceanic crust. Garnet growth during pressure increase was dated using Lu-Hf chronometry. The results range between c. 100 and c. 90 Ma, indicating a short period of subduction. Combined with already published data, our estimates of metamorphic conditions indicate a field gradient with increasing pressure and temperature from northwest to southeast, where the rocks experienced ultrahigh-pressure metamorphism. The oldest Cretaceous eclogites (c. 100 Ma) are found in the Saualpe-Koralpe area which comprises widespread gabbros formed during Permian to Triassic rifting. This supports the hypothesis that subduction initiation was intracontinental and localized by a Permian rift. In the Texel Complex two-phased garnets yielded a Variscan-Eoalpine mixed age indicating re-subduction of Variscan eclogite-bearing continental crust during the Eoalpine orogeny. Jurassic blueschist-facies metamorphism at Meliata in the Western Carpathians and Cretaceous eclogite-facies metamorphism in the Austroalpine are separated by a time gap of ~50 Ma and therefore do not represent a transition from oceanic to continental subduction but rather separate events.</p>

Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 947-951
Author(s):  
Joseph P. Gonzalez ◽  
Suzanne L. Baldwin ◽  
Jay B. Thomas ◽  
William O. Nachlas ◽  
Paul G. Fitzgerald

Abstract The Appalachian orogen has long been enigmatic because, compared to other parts of the Paleozoic orogens that formed following the subduction of the Iapetus Ocean, direct evidence for ultrahigh-pressure (UHP) metamorphism has never been found. We report the first discovery of coesite in the Appalachian orogen in a metapelite from the mid-Ordovician (Taconic orogeny) Tillotson Peak Complex in Vermont (USA). Relict coesite occurs within a bimineralic SiO2 inclusion in garnet. In situ elastic barometry and trace-element thermometry allow reconstruction of the garnet growth history during prograde metamorphism. The data are interpreted to indicate garnet nucleation and crystallization during blueschist- to eclogite-facies subduction zone metamorphism, followed by garnet rim growth at UHP conditions of > 28 kbar and > 530 ° C. Results provide the first direct evidence that rocks of the Appalachian orogen underwent UHP metamorphism to depths of > 75 km and warrant future studies that constrain the extent of UHP metamorphism.


Tectonics ◽  
2004 ◽  
Vol 23 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Marian Janák ◽  
Nikolaus Froitzheim ◽  
Branislav Lupták ◽  
Mirijam Vrabec ◽  
Erling J. Krogh Ravna

2006 ◽  
Vol 24 (1) ◽  
pp. 19-31 ◽  
Author(s):  
M. JANAK ◽  
N. FROITZHEIM ◽  
M. VRABEC ◽  
E. J. KROGH RAVNA ◽  
J. C. M. HOOG

2021 ◽  
Author(s):  
Kathrin Fassmer ◽  
Peter Tropper ◽  
Hannah Pomella ◽  
Thomas Angerer ◽  
Gerald Degenhart ◽  
...  

<p>In collisional orogens continental crust is subducted to (ultra-)high-pressure (HP/UHP) conditions as constrained by petrologic, tectonic and geophysical observations. Despite a wealth of studies on the subduction and exhumation of UHP rocks, the duration of prograde metamorphism during subduction is still not well constrained.</p><p>We plan to apply Lu-Hf and Sm-Nd geochronology on metamorphic rock samples to date the duration of garnet growth, which represents a major part of prograde metamorphism from the greenschist-facies onward. Micaschist samples from the Schneeberg and Radenthein Units in the Eoalpine high-pressure belt (Eastern Alps) will be used for dating as they contain cm- to dm-sized garnet blasts, which experienced only one subduction-exhumation cycle. With dating different parts of big garnet grains, we test whether (1) it is possible to resolve the duration of garnet growth within single crystals, and (2) Lu-Hf and Sm-Nd systems date the same events in the PT-path or yield complementary information. Additionally, we will perform U-Pb geochronology on titanite in order to obtain the age of the first stages of exhumation; in addition, dating of rutile inclusions as well as matrix rutiles will be used to test Eoalpine prograde age. We will also apply U-Th-Pb monazite dating (EPMA and LA-ICPMS) to some of the samples. Collectively, these data will allow us to compare the duration of subduction and the timing of initial exhumation in a single sample. We then will constrain the PT-path of the dated samples by pseudosection modeling combined with Zr-in-rutile, quartz-in-garnet, and carbonaceous material geothermo(baro)metry. We already have preliminary results for Zr-in-rutile thermometry of rutile inclusions in garnets and matrix rutiles for samples from both locations. We measured Zr content with an EPMA and used the calibrations of Tomkins et al. (2007) and Kohn (2020). The calibration of Kohn (2020) gives overall slightly lower temperatures, but all obtained temperatures lay in a range of c. 500-600 °C in accordance with previously published data. In addition, EPMA, µ-XRF, LA-ICPMS, and µCT will be used to control if garnets preserved major and trace elemental growth zoning and to provide spatial 3D information on inclusion patterns. µCT analyses were already successfully used to obtain the chemical centre of the garnet grains in order to be able to cut them directly through there center. This is important for all in-situ chemical analyses. With dating different parts of single garnet crystals separately with Lu-Hf and Sm-Nd geochronology, we will add tight time constraints to the PT-path and constrain the duration of garnet growth.</p><p>With this contribution we formulate the working hypothesis that prograde subduction together with exhumation is a fast process. The basis for testing the idea of fast prograde metamorphism is that many geochronological studies propose a prograde duration of < 10 Ma and studies using geospeedometry sometimes propose an even shorter duration, which is the impetus for this investigation.</p><p>References:</p><p>Kohn, M.J. (2020). A refined zirconium-in-rutile thermometer. American Mineralogist(105), 963-971.</p><p>Tomkins, H.S., Powell, R. & Ellis, D.J. (2007). The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology(25), 703-713.</p>


Early cratonal development of the Arabian Shield of southwestern Saudi Arabia began with the deposition of calcic to calc-alkalic, basaltic to dacitic volcanic rocks, and immature sedimentary rocks that subsequently were moderately deformed, metamorphosed, and intruded about 960 Ma ago by dioritic batholiths of mantle derivation (87Sr/86Sr = 0.7029). A thick sequence of calc-alkalic andesitic to rhyodacitic volcanic rocks and volcanoclastic wackes was deposited unconformably on this neocraton. Regional greenschistfacies metamorphism, intensive deformation along north-trending structures, and intrusion of mantle-derived (87Sr/86Sr = 0.7028) dioritic to granodioritic batholiths occurred about 800 Ma. Granodiorite was emplaced as injection gneiss about 785 Ma (87Sr/86Sr = 0.7028- 0.7035) in localized areas of gneiss doming and amphibolite to granulite facies metamorphism. Deposition of clastic and volcanic rocks overlapped in time and followed orogeny at 785 Ma. These deposits, together with the older rocks, were deformed, metamorphosed to greenschist facies, and intruded by calc-alkalic plutons (87Sr/86Sr = 0.7035) between 600 and 650 Ma. Late cratonal development between 570 and 550 Ma involved moderate pulses of volcanism, deformation, metamorphism to greenschist facies, and intrusion of quartz monzonite and granite. Cratonization appears to have evolved in an intraoceanic, island-arc environment of comagmatic volcanism and intrusion.


Sign in / Sign up

Export Citation Format

Share Document