Unmanned Stratospheric Glider for Satellite Calibration

Author(s):  
Nick Craine

<div> <div> <div> <div> <p>Stratodynamics Aviation Inc. is an Earth Observation platform and service provider that’s pioneered a new cost-effective method of remote access the stratosphere. The platform called the HiDRON has successfully deployed scientific instruments over 100,000 feet above the earth and back again using balloon launched, autonomous technology.</p> <div> <div> <div> <div> <p>Most satellites are able to self-calibrate however, optical and spectral units that are required to interpret data through the boundary layer face difficult challenges. We’ve identified opportunities to calibrate instruments by flying proxy beam/pulse emitters at stratospheric altitudes. As well, we see meaningful advantages to an Aircore integrated system that can capture high altitude air samples as a validation exercise. This method serves to extend the mission life of satellites beyond their intended length. Specifically, the RADARSAT constellation, the COPERNICUS program, AEOLUS as well as future Greenhouse Gas sensing satellites.</p> <p>We would like to propose this technology to the EGU General Assembly 2020 for consideration as a calibration solution.</p> </div> </div> </div> </div> </div> </div> </div> </div>

The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


1996 ◽  
Vol 33 (8) ◽  
pp. 23-29 ◽  
Author(s):  
I. Dor ◽  
N. Ben-Yosef

About one hundred and fifty wastewater reservoirs store effluents for irrigation in Israel. Effluent qualities differ according to the inflowing wastewater quality, the degree of pretreatment and the operational parameters. Certain aspects of water quality like concentration of organic matter, suspended solids and chlorophyll are significantly correlated with the water column transparency and colour. Accordingly optical images of the reservoirs obtained from the SPOT satellite demonstrate pronounced differences correlated with the water quality. The analysis of satellite multispectral images is based on a theoretical model. The model calculates, using the radiation transfer equation, the volume reflectance of the water body. Satellite images of 99 reservoirs were analyzed in the chromacity space in order to classify them according to water quality. Principal Component Analysis backed by the theoretical model increases the method sensitivity. Further elaboration of this approach will lead to the establishment of a time and cost effective method for the routine monitoring of these hypertrophic wastewater reservoirs.


2013 ◽  
Vol 10 (3) ◽  
pp. 159-163 ◽  
Author(s):  
Jun Peng ◽  
Yue Feng ◽  
Zhu Tao ◽  
Yingjie Chen ◽  
Xiangnan Hu

Author(s):  
Han Dolman

This book describes the interaction of the main biogeochemical cycles of the Earth and the physics of climate. It takes the perspective of Earth as an integrated system and provides examples of both changes in the current climate and those in the geological past. The first three chapters offer a general introduction to the context of the book, outlining the climate system as a complex interplay between biogeochemistry and physics and describing the tools available for understanding climate: observations and models. These chapters describe the basics of the system, the rates and magnitudes and the crucial aspects of biogeochemical cycles needed to understand their functioning. The second part of the book consists of four chapters that describe the physics required to understand the interaction of the climate with biogeochemistry and change. These chapters describe the physics of radiation, and that of the atmosphere, ocean circulation and thermodynamics. The interaction of aerosols with radiation and clouds is addressed in an additional chapter. The third part of the book deals with Earth’s (bio)geochemical cycles. These chapters focus on the stocks and fluxes of the main reservoirs of Earth’s biogeochemical cycles—atmosphere, land and ocean—and their role in the cycles of carbon, oxygen, nitrogen, iron, phosphorus, oxygen, sulphur and water, as well as their interactions with climate. The final two chapters describe possible mitigation and adaptation actions, in relation to recent climate agreements, but always with an emphasis on the biogeochemical aspects.


2001 ◽  
Vol 47 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Magnus Jonsson ◽  
Joyce Carlson ◽  
Jan-Olof Jeppsson ◽  
Per Simonsson

Abstract Background: Electrophoresis of serum samples allows detection of monoclonal gammopathies indicative of multiple myeloma, Waldenström macroglobulinemia, monoclonal gammopathy of undetermined significance, and amyloidosis. Present methods of high-resolution agarose gel electrophoresis (HRAGE) and immunofixation electrophoresis (IFE) are manual and labor-intensive. Capillary zone electrophoresis (CZE) allows rapid automated protein separation and produces digital absorbance data, appropriate as input for a computerized decision support system. Methods: Using the Beckman Paragon CZE 2000 instrument, we analyzed 711 routine clinical samples, including 95 monoclonal components (MCs) and 9 cases of Bence Jones myeloma, in both the CZE and HRAGE systems. Mathematical algorithms developed for the detection of monoclonal immunoglobulins (MCs) in the γ- and β-regions of the electropherogram were tested on the entire material. Additional algorithms evaluating oligoclonality and polyclonal concentrations of immunoglobulins were also tested. Results: CZE electropherograms corresponded well with HRAGE. Only one IgG MC of 1 g/L, visible on HRAGE, was not visible after CZE. Algorithms detected 94 of 95 MCs (98.9%) and 100% of those visible after CZE. Of 607 samples lacking an MC on HRAGE, only 3 were identified by the algorithms (specificity, 99%). Algorithms evaluating total gammaglobulinemia and oligoclonality also identified several cases of Bence Jones myeloma. Conclusions: The use of capillary electrophoresis provides a modern, rapid, and cost-effective method of analyzing serum proteins. The additional option of computerized decision support, which provides rapid and standardized interpretations, should increase the clinical availability and usefulness of protein analyses in the future.


Author(s):  
Trine S. Mykkeltvedt ◽  
Sarah E. Gasda ◽  
Tor Harald Sandve

AbstractCarbon-neutral oil production is one way to improve the sustainability of petroleum resources. The emissions from produced hydrocarbons can be offset by injecting capture CO$$_{2}$$ 2 from a nearby point source into a saline aquifer for storage or a producing oil reservoir. The latter is referred to as enhanced oil recovery (EOR) and would enhance the economic viability of CO$$_{2}$$ 2 sequestration. The injected CO$$_{2}$$ 2 will interact with the oil and cause it to flow more freely within the reservoir. Consequently, the overall recovery of oil from the reservoir will increase. This enhanced oil recovery (EOR) technique is perceived as the most cost-effective method for disposing captured CO$$_{2}$$ 2 emissions and has been performed for many decades with the focus on oil recovery. The interaction between existing oil and injected CO$$_{2}$$ 2 needs to be fully understood to effectively manage CO$$_{2}$$ 2 migration and storage efficiency. When CO$$_{2}$$ 2 and oil mix in a fully miscible setting, the density can change non-linearly and cause density instabilities. These instabilities involve complex convective-diffusive processes, which are hard to model and simulate. The interactions occur at the sub-centimeter scale, and it is important to understand its implications for the field scale migration of CO$$_{2}$$ 2 and oil. In this work, we simulate gravity effects, namely gravity override and convective mixing, during miscible displacement of CO$$_{2}$$ 2 and oil. The flow behavior due to the competition between viscous and gravity effects is complex, and can only be accurately simulated with a very fine grid. We demonstrate that convection occurs rapidly, and has a strong effect on breakthrough of CO$$_{2}$$ 2 at the outlet. This work for the first time quantifies these effects for a simple system under realistic conditions.


2021 ◽  
pp. 112814
Author(s):  
Ibrahim Kakouche ◽  
Abdelmadjid Maali ◽  
Mohammed Nabil El Korso ◽  
Ammar Mesloub ◽  
Mohamed Salah Azzaz

Sign in / Sign up

Export Citation Format

Share Document