Net precipitation assessment in a grassland and soil moisture response at plot scale in a temperate climate

Author(s):  
Gökben Demir ◽  
Johanna Clara Metzger ◽  
Janett Filipzik ◽  
Christine Fischer ◽  
Beate Michalzik ◽  
...  

<div> <p>Evidence on spatial variation of net precipitation in grasslands is scarce. Challenges arise due to a small-scale canopy structure of grasslands.</p> <p>In this study, we designed and tested a new in-situ measurement device (interception grid) to assess net precipitation in grasslands. The collector allows the natural development of the canopy. We tested the device both in the lab for splash loss and in the field to test its capacity to assess net precipitation. In the field, we installed 25 collectors on a grassland within the Hainich Critical Zone Exploratory (Thuringia, Germany), 23 of which were paired with soil moisture sensors. We conducted weekly measurements gross and net precipitation (above and below the canopy), along with grass height in 2019 (March-August) and 2020 (January -February). We categorized the data into two groups (‘covered,’ ‘uncovered’), accounting for canopy development.</p> <p>In the lab, we found that the drop size strongly affects splash loss. Drops of ca. 2 mm, created more than 16% splash loss, decreasing to less than 3% for drops <1.5 mm. Drop sizes <1.75 mm during the sampling period (2019) suggest low to intermediate splash loss in the field, further decreased in the covered period as the canopy contact slows down the drops. Grid measurements corrected with estimated splash loss during the uncovered period agreed well with gross precipitation. Using linear mixed effect models, we found that wind speed and grass height significantly affected the grid measurements of covered periods. Therefore, grids were able to capture net precipitation variation due to grass development. These steps encouraged us to examine the canopy effect in the soil moisture response to rainfall.</p> <p>Soil moisture response over the entire period was not related to the spatial variation of net precipitation. However, for the drier period (June-August 2019), when the spatial variation in soil moisture is higher, and the overall response to rain events stronger, net precipitation slightly affected soil moisture response. LMEM analysis to estimate factors on soil moisture response showed that grass height, net precipitation are significant predictors. Yet, there is no remarkable difference between using net precipitation and gross precipitation as potential drivers for soil moisture response, indicating that the spatial effects are comparatively small. Overall, our findings suggest that the grids are cable to catch canopy effects on the precipitation, while the effect of wind on under-catch still needs to be investigated further.</p> </div>

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erica Kilius ◽  
David R. Samson ◽  
Sheina Lew-Levy ◽  
Mallika S. Sarma ◽  
Ujas A. Patel ◽  
...  

AbstractSleep studies in small-scale subsistence societies have broadened our understanding of cross-cultural sleep patterns, revealing the flexibility of human sleep. We examined sleep biology among BaYaka foragers from the Republic of Congo who move between environmentally similar but socio-ecologically distinct locations to access seasonal resources. We analyzed the sleep–wake patterns of 51 individuals as they resided in a village location (n = 39) and a forest camp (n = 23) (362 nights total). Overall, BaYaka exhibited high sleep fragmentation (50.5) and short total sleep time (5.94 h), suggestive of segmented sleep patterns. Sleep duration did not differ between locations, although poorer sleep quality was exhibited in the village. Linear mixed effect models demonstrated that women’s sleep differed significantly from men’s in the forest, with longer total sleep time (β ± SE =  − 0.22 ± 0.09, confidence interval (CI) = [− 0.4, − 0.03]), and higher sleep quality (efficiency; β ± SE =  − 0.24 ± 0.09, CI = [− 0.42, − 0.05]). These findings may be due to gender-specific social and economic activities. Circadian rhythms were consistent between locations, with women exhibiting stronger circadian stability. We highlight the importance of considering intra-cultural variation in sleep–wake patterns when taking sleep research into the field.


2014 ◽  
Vol 13 (3) ◽  
pp. 269-278 ◽  
Author(s):  
Andrea Benedetto ◽  
Fabio Tosti ◽  
Bianca Ortuani ◽  
Mauro Giudici ◽  
Mauro Mele

2016 ◽  
Vol 13 (8) ◽  
pp. 2611-2621 ◽  
Author(s):  
Kimberley L. Davies ◽  
Richard D. Pancost ◽  
Mary E. Edwards ◽  
Katey M. Walter Anthony ◽  
Peter G. Langdon ◽  
...  

Abstract. Cryospheric changes in northern high latitudes are linked to significant greenhouse gas flux to the atmosphere, for example, methane that originates from organic matter decomposition in thermokarst lakes. The set of pathways that link methane production in sediments, via oxidation in the lake system, to the flux of residual methane to the atmosphere is complex and exhibits temporal and spatial variation. The isotopic signal of bacterial biomarkers (hopanoids, e.g. diploptene) in sediments has been used to identify contemporary ocean-floor methane seeps and, in the geological record, periods of enhanced methane production (e.g. the PETM). The biomarker approach could potentially be used to assess temporal changes in lake emissions through the Holocene via the sedimentary biomarker record. However, there are no data on the consistency of the signal of isotopic depletion in relation to source or on the amount of noise (unexplained variation) in biomarker values from modern lake sediments. We assessed methane oxidation as represented by the isotopic signal of biomarkers from methane oxidising bacteria (MOB) in multiple surface sediment samples in three distinct areas known to emit varying levels of methane in two shallow Alaskan thermokarst lakes. Diploptene was present and had δ13C values lower than −38 ‰ in all sediments analysed, suggesting methane oxidation was widespread. However, there was considerable variation in δ13C values within each area. The most 13C-depleted diploptene was found in an area of high methane ebullition in Ace Lake (diploptene δ13C values between −68.2 and −50.1 ‰). In contrast, significantly higher diploptene δ13C values (between −42.9 and −38.8 ‰) were found in an area of methane ebullition in Smith Lake. δ13C values of diploptene between −56.8 and −46.9 ‰ were found in the centre of Smith Lake, where ebullition rates are low but diffusive methane efflux occurs. The small-scale heterogeneity of the samples may reflect patchy distribution of substrate and/or MOB within the sediments. The two ebullition areas differ in age and type of organic carbon substrate, which may affect methane production, transport, and subsequent oxidation. Given the high amount of variation in surface samples, a more extensive calibration of modern sediment properties, within and among lakes, is required before down-core records of hopanoid isotopic signatures are developed.


Hydrobiologia ◽  
2018 ◽  
Vol 845 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Sophie Delerue-Ricard ◽  
Hanna Stynen ◽  
Léo Barbut ◽  
Fabien Morat ◽  
Kelig Mahé ◽  
...  

2008 ◽  
Vol 5 (3) ◽  
pp. 779-795 ◽  
Author(s):  
A. C. de Araújo ◽  
J. P. H. B. Ometto ◽  
A. J. Dolman ◽  
B. Kruijt ◽  
M. J. Waterloo ◽  
...  

Abstract. The carbon isotope of a leaf (δ13Cleaf) is generally more negative in riparian zones than in areas with low soil moisture content or rainfall input. In Central Amazonia, the small-scale topography is composed of plateaus and valleys, with plateaus generally having a lower soil moisture status than the valley edges in the dry season. Yet in the dry season, the nocturnal accumulation of CO2 is higher in the valleys than on the plateaus. Samples of sunlit leaves and atmospheric air were collected along a topographical gradient in the dry season to test whether the δ13Cleaf of sunlit leaves and the carbon isotope ratio of ecosystem respired CO2 (δ13CReco) may be more negative in the valley than those on the plateau. The δ13Cleaf was significantly more negative in the valley than on the plateau. Factors considered to be driving the observed variability in δ13Cleaf were: leaf nitrogen concentration, leaf mass per unit area (LMA), soil moisture availability, more negative carbon isotope ratio of atmospheric CO2 (δ13Ca) in the valleys during daytime hours, and leaf discrimination (Δleaf). The observed pattern of δ13Cleaf might suggest that water-use efficiency (WUE) is higher on the plateaus than in the valleys. However, there was no full supporting evidence for this because it remains unclear how much of the difference in δ13Cleaf was driven by physiology or &delta13Ca. The δ13CReco was more negative in the valleys than on the plateaus on some nights, whereas in others it was not. It is likely that lateral drainage of CO2 enriched in 13C from upslope areas might have happened when the nights were less stable. Biotic factors such as soil CO2 efflux (Rsoil) and the responses of plants to environmental variables such as vapor pressure deficit (D) may also play a role. The preferential pooling of CO2 in the low-lying areas of this landscape may confound the interpretation of δ13Cleaf and δ13CReco.


2007 ◽  
Vol 4 (6) ◽  
pp. 4459-4506
Author(s):  
A. C. de Araújo ◽  
J. P. H. B. Ometto ◽  
A. J. Dolman ◽  
B. Kruijt ◽  
M. J. Waterloo ◽  
...  

Abstract. The carbon isotope of a leaf (δ13Cleaf) is generally more negative in riparian zones than in areas with low soil moisture content or rainfall input. In Central Amazonia, the small-scale topography is composed of plateaus and valleys, with plateaus generally being drier than the valley edges in the dry season. The nocturnal accumulation of CO2 is higher in the valleys than on the plateaus in the dry season. The CO2 stored in the valleys takes longer to be released than that on the plateaus, and sometimes the atmospheric CO2 concentration (ca) does not drop to the same level as on the plateaus at any time during the day. Samples of sunlit leaves and atmospheric air were collected along a topographical gradient to test whether the δ13Cleaf of sunlit leaves and the carbon isotope ratio of ecosystem respired CO2 (δ13CR) may be more negative in the valley than those on the plateau. The δ13Cleaf was significantly more negative in the valley than on the plateau. Factors considered to be driving the observed variability in δ13Cleaf were: leaf nitrogen concentration, leaf mass per unit area (LMA), soil moisture availability, more negative carbon isotope ratio of atmospheric CO2 (δ13Ca) in the valleys during daytime hours, and leaf discrimination (Δleaf). The observed pattern of δ13Cleaf suggests that water-use efficiency (WUE) may be higher on the plateaus than in the valleys. The ;13CR was more negative in the valleys than on the plateaus on some nights, whereas in others it was not. It is likely that lateral drainage of CO2 enriched in 13C from upslope areas might have happened when the nights were less stable. Biotic factors such as soil CO2 efflux (Rsoil) and the responses of plants to environmental variables such as vapor pressure deficit (D) may also play a role.


2021 ◽  
Vol 13 (17) ◽  
pp. 3387
Author(s):  
Qiong Gao ◽  
Mei Yu

The coastal mangrove forest bears important ecosystem functions and services, including the protection of shorelines and coastal communities. While coastal mangroves often suffer severe damage during storms, understanding the vulnerability and resistance of mangroves to the damage at a landscape scale is crucial for coastal mangrove management and conservation. In September 2017, two consecutive major hurricanes caused tremendous damage to the coastal mangroves in the Caribbean. By utilizing LiDAR data taken before and after the hurricanes in a basin mangrove forest in Northeast Puerto Rico, we analyzed the spatial variation of a canopy structure before the hurricanes and hurricane-induced canopy height reduction and explored possible drivers by means of spatial regressions. Regarding the canopy structure, we found that the pre-hurricane canopy height of the mangrove forest decreased with elevation and distance to the freshwater/sewage canals within the forest, and these two drivers explained 82% of variations in the mangrove canopy height. The model, thus, implies that freshwater and nutrient inputs brought by the canals tend to promote the canopy height, and mangrove trees at lower elevation are especially more advantageous. Similarly, tree densities decreased with the canopy height but increased with the elevation and the distance to the canals. We also found that this mangrove forest suffered on average a 53% canopy height reduction, reflecting mostly heavy crown defoliation and the rupture of branches. The regression, which explains 88% of spatial variation in the canopy height reduction, showed that mangroves with a higher canopy or lower density, or growing in lower elevation, or being closer to the canals suffered more damage. Our findings indicate that delivered freshwater/sewage by means of human-made canals has a strong impact on the canopy structure as well as its resistance to tropical storms. Freshwater and sewage tend to release the salinity stress and nutrient deficit and, thus, to promote the mangrove canopy height. However, the addition of freshwater and nutrients might also increase the risk of mangrove damage during the storms probably because of an altered allometry of assimilates.


Sign in / Sign up

Export Citation Format

Share Document