scholarly journals Diploptene <i>δ</i><sup>13</sup>C values from contemporary thermokarst lake sediments show complex spatial variation

2016 ◽  
Vol 13 (8) ◽  
pp. 2611-2621 ◽  
Author(s):  
Kimberley L. Davies ◽  
Richard D. Pancost ◽  
Mary E. Edwards ◽  
Katey M. Walter Anthony ◽  
Peter G. Langdon ◽  
...  

Abstract. Cryospheric changes in northern high latitudes are linked to significant greenhouse gas flux to the atmosphere, for example, methane that originates from organic matter decomposition in thermokarst lakes. The set of pathways that link methane production in sediments, via oxidation in the lake system, to the flux of residual methane to the atmosphere is complex and exhibits temporal and spatial variation. The isotopic signal of bacterial biomarkers (hopanoids, e.g. diploptene) in sediments has been used to identify contemporary ocean-floor methane seeps and, in the geological record, periods of enhanced methane production (e.g. the PETM). The biomarker approach could potentially be used to assess temporal changes in lake emissions through the Holocene via the sedimentary biomarker record. However, there are no data on the consistency of the signal of isotopic depletion in relation to source or on the amount of noise (unexplained variation) in biomarker values from modern lake sediments. We assessed methane oxidation as represented by the isotopic signal of biomarkers from methane oxidising bacteria (MOB) in multiple surface sediment samples in three distinct areas known to emit varying levels of methane in two shallow Alaskan thermokarst lakes. Diploptene was present and had δ13C values lower than −38 ‰ in all sediments analysed, suggesting methane oxidation was widespread. However, there was considerable variation in δ13C values within each area. The most 13C-depleted diploptene was found in an area of high methane ebullition in Ace Lake (diploptene δ13C values between −68.2 and −50.1 ‰). In contrast, significantly higher diploptene δ13C values (between −42.9 and −38.8 ‰) were found in an area of methane ebullition in Smith Lake. δ13C values of diploptene between −56.8 and −46.9 ‰ were found in the centre of Smith Lake, where ebullition rates are low but diffusive methane efflux occurs. The small-scale heterogeneity of the samples may reflect patchy distribution of substrate and/or MOB within the sediments. The two ebullition areas differ in age and type of organic carbon substrate, which may affect methane production, transport, and subsequent oxidation. Given the high amount of variation in surface samples, a more extensive calibration of modern sediment properties, within and among lakes, is required before down-core records of hopanoid isotopic signatures are developed.

2015 ◽  
Vol 12 (15) ◽  
pp. 12157-12189
Author(s):  
K. L. Davies ◽  
R. D. Pancost ◽  
M. E. Edwards ◽  
K. M. Walter Anthony ◽  
P. G. Langdon ◽  
...  

Abstract. Cryospheric changes in northern high latitudes are linked to significant greenhouse gas flux to the atmosphere, including methane release that originates from organic matter decomposition in thermokarst lakes. The connections between methane production in sediments, transport pathways and oxidation are not well understood and this has implications for any attempts to reconstruct methane production from sedimentary archives. We assessed methane oxidation as represented by methane oxidising bacteria across the surface sediments of two interior Alaska thermokarst lakes in relation to methane emissions via ebullition (bubbling). The bacterial biomarker diploptene was present and had low δ13C values (lower than −38 ‰) in all sediments analysed, suggesting methane oxidation was widespread. The most δ13C-depleted diploptene was found in the area of highest methane ebullition emissions in Ace Lake (δ13C diplotene values between −68.2 and −50.1 ‰), suggesting a positive link between methane production, oxidation, and emission in this area. In contrast, significantly less depleted diploptene δ13C values (between −42.9 and −38.8 ‰) were found in the area of highest methane ebullition emissions in Smith Lake. Lower δ13C values of diploptene were found in the central area of Smith Lake (between −56.8 and −46.9 ‰), where methane ebullition rates are low but methane diffusion appears high. Using δ13C-diplotene as a proxy for methane oxidation activity, we suggest the observed differences in methane oxidation levels among sites within the two lakes could be linked to differences in source area of methane production (e.g. age and type of organic carbon) and bathymetry as it relates to varying oxycline depths and changing pressure gradients. As a result, methane oxidation is highly lake-dependent. The diploptene δ13C values also highlight strong within-lake variability, implying that single-value, down-core records of hopanoid isotopic signatures are not secure indicators of changing methane flux at the whole-lake scale.


2015 ◽  
Vol 14 (4) ◽  
pp. 745-749
Author(s):  
Daisuke Tashima ◽  
Yoki Asano ◽  
Shigeki Tomomatsu ◽  
Yasuhiro Sugimoto

2021 ◽  
Author(s):  
Gökben Demir ◽  
Johanna Clara Metzger ◽  
Janett Filipzik ◽  
Christine Fischer ◽  
Beate Michalzik ◽  
...  

&lt;div&gt; &lt;p&gt;Evidence on spatial variation of net precipitation in grasslands is scarce. Challenges arise due to a small-scale canopy structure of grasslands.&lt;/p&gt; &lt;p&gt;In this study, we designed and tested a new in-situ measurement device (interception grid) to assess net precipitation in grasslands. The collector allows the natural development of the canopy. We tested the device both in the lab for splash loss and in the field to test its capacity to assess net precipitation. In the field, we installed 25 collectors on a grassland within the Hainich Critical Zone Exploratory (Thuringia, Germany), 23 of which were paired with soil moisture sensors. We conducted weekly measurements gross and net precipitation (above and below the canopy), along with grass height in 2019 (March-August) and 2020 (January -February). We categorized the data into two groups (&amp;#8216;covered,&amp;#8217; &amp;#8216;uncovered&amp;#8217;), accounting for canopy development.&lt;/p&gt; &lt;p&gt;In the lab, we found that the drop size strongly affects splash loss. Drops of ca. 2 mm, created more than 16% splash loss, decreasing to less than 3% for drops &lt;1.5 mm. Drop sizes &lt;1.75 mm during the sampling period (2019) suggest low to intermediate splash loss in the field, further decreased in the covered period as the canopy contact slows down the drops. Grid measurements corrected with estimated splash loss during the uncovered period agreed well with gross precipitation. Using linear mixed effect models, we found that wind speed and grass height significantly affected the grid measurements of covered periods. Therefore, grids were able to capture net precipitation variation due to grass development. These steps encouraged us to examine the canopy effect in the soil moisture response to rainfall.&lt;/p&gt; &lt;p&gt;Soil moisture response over the entire period was not related to the spatial variation of net precipitation. However, for the drier period (June-August 2019), when the spatial variation in soil moisture is higher, and the overall response to rain events stronger, net precipitation slightly affected soil moisture response. LMEM analysis to estimate factors on soil moisture response showed that grass height, net precipitation are significant predictors. Yet, there is no remarkable difference between using net precipitation and gross precipitation as potential drivers for soil moisture response, indicating that the spatial effects are comparatively small. Overall, our findings suggest that the grids are cable to catch canopy effects on the precipitation, while the effect of wind on under-catch still needs to be investigated further.&lt;/p&gt; &lt;/div&gt;


2008 ◽  
Vol 40 (9) ◽  
pp. 2468-2473 ◽  
Author(s):  
Benjamin K. Sey ◽  
Ameur M. Manceur ◽  
Joann K. Whalen ◽  
Edward G. Gregorich ◽  
Philippe Rochette

Hydrobiologia ◽  
2018 ◽  
Vol 845 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Sophie Delerue-Ricard ◽  
Hanna Stynen ◽  
Léo Barbut ◽  
Fabien Morat ◽  
Kelig Mahé ◽  
...  

2016 ◽  
Vol 13 (1) ◽  
pp. 27-44 ◽  
Author(s):  
P. R. Lindgren ◽  
G. Grosse ◽  
K. M. Walter Anthony ◽  
F. J. Meyer

Abstract. Thermokarst lakes are important emitters of methane, a potent greenhouse gas. However, accurate estimation of methane flux from thermokarst lakes is difficult due to their remoteness and observational challenges associated with the heterogeneous nature of ebullition. We used high-resolution (9–11 cm) snow-free aerial images of an interior Alaskan thermokarst lake acquired 2 and 4 days following freeze-up in 2011 and 2012, respectively, to detect and characterize methane ebullition seeps and to estimate whole-lake ebullition. Bubbles impeded by the lake ice sheet form distinct white patches as a function of bubbling when lake ice grows downward and around them, trapping the gas in the ice. Our aerial imagery thus captured a snapshot of bubbles trapped in lake ice during the ebullition events that occurred before the image acquisition. Image analysis showed that low-flux A- and B-type seeps are associated with low brightness patches and are statistically distinct from high-flux C-type and hotspot seeps associated with high brightness patches. Mean whole-lake ebullition based on optical image analysis in combination with bubble-trap flux measurements was estimated to be 174 ± 28 and 216 ± 33 mL gas m−2 d−1 for the years 2011 and 2012, respectively. A large number of seeps demonstrated spatiotemporal stability over our 2-year study period. A strong inverse exponential relationship (R2 >  =  0.79) was found between the percent of the surface area of lake ice covered with bubble patches and distance from the active thermokarst lake margin. Even though the narrow timing of optical image acquisition is a critical factor, with respect to both atmospheric pressure changes and snow/no-snow conditions during early lake freeze-up, our study shows that optical remote sensing is a powerful tool to map ebullition seeps on lake ice, to identify their relative strength of ebullition, and to assess their spatiotemporal variability.


2014 ◽  
Vol 1073-1076 ◽  
pp. 619-627
Author(s):  
Fang She Yang ◽  
Shu Zhen Su ◽  
Juan Juan Zhang ◽  
Ci Fen Bi

In this paper, based on geostatistics and GIS techniques, spatial variation characteristics of soil organic matter (acronym: SOM) on a small scale were analyzed and discussed in east-one-branch gully (EG1) bed with the seabuckthorn flexible dam and the contrastive gully bed (which is non-vegetated any vegetation) located in zhun-ge-er county, Erdos, inner Mongolia, which belongs to the typical Pisha Sandstone area. The results show that the seabuckthorn can significantly increase SOM in the small catchment gully bed in the Pisha sandstone area, and the mean SOM content in gully bed with the seabuckthorn flexible dam is approximate 1.75 times that in the contrastive gully. Apparent spatial variation characteristics of SOM were found in the gully with the seabuckthorn flexible dam and the contrastive gully bed, moreover, the medium spatial autocorrelation of SOM was detected in gully bed with the seabuckthorn flexible dam, and the spatial variation of SOM was together led to by the structural and random variation at 1-6.5 m range, and of which the random variation accounts for 40%. Additional, the spatial autocorrelation of SOM in the contrastive gully bed is higher, the spatial variation of SOM was dominantly brought about by the structural variation at 1-4.5 m range, and of which the random variation accounts for 37%. Furthermore, the fractal dimension values reveal that dependence of SOM of the gully bed with the seabuckthorn flexible dam on spatial is weaker than that of the contrastive gully bed. It is judged that the seabuckthorn has an obvious effect on spatial distribution patterns and heterogeneity of SOM on a small scale.


2003 ◽  
Vol 33 (12) ◽  
pp. 2509-2513 ◽  
Author(s):  
Brian W Benscoter ◽  
R Kelman Wieder

Fire directly releases carbon (C) to the atmosphere through combustion of biomass. An estimated 1470 ± 59 km2 of peatland burns annually in boreal, western Canada, releasing 4.7 ± 0.6 Tg C to the atmosphere via direct combustion. We quantified within-site variation in organic matter lost via combustion in a bog peatland in association with the 116 000-ha Chisholm, Alberta, fire in 2001. We hypothesized that for peatlands with considerable small-scale microtopography (bogs and treed fens), hummocks will burn less than hollows. We found that hollows exhibit more combustion than hummocks, releasing nearly twice as much C to the atmosphere. Our results suggest that spatial variability in species composition and site hydrology within a landform and across a landscape could contribute to considerable spatial variation in the amounts of C released via combustion during peatland fire, although the magnitude of this variation may be dependent on fire severity.


Sign in / Sign up

Export Citation Format

Share Document